Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions

Identifieur interne : 005021 ( PascalFrancis/Corpus ); précédent : 005020; suivant : 005022

Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions

Auteurs : L. M. Bresson ; C. J. Moran

Source :

RBID : Pascal:04-0138847

Descripteurs français

English descriptors

Abstract

Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0016-7061
A02 01      @0 GEDMAB
A03   1    @0 Geoderma : (Amst.)
A05       @2 118
A06       @2 3-4
A08 01  1  ENG  @1 Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions
A11 01  1    @1 BRESSON (L. M.)
A11 02  1    @1 MORAN (C. J.)
A14 01      @1 UMR INRA/INAPG Environnement et Grandes Cultures @2 78850 Thiverval-Grignon @3 FRA @Z 1 aut.
A14 02      @1 CSIRO Land and Water GPO Box 1660 @2 Canberra, ACT 2601 @3 AUS @Z 2 aut.
A20       @1 277-288 @7 2
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 3607 @5 354000116350920100
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 04-0138847
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Geoderma : (Amsterdam)
A66 01      @0 NLD
C01 01    ENG  @0 Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.
C02 01  2    @0 226C03
C02 02  X    @0 001E01P03
C03 01  2  FRE  @0 Nouvelle Galles du Sud @2 NG @5 01
C03 01  2  ENG  @0 New South Wales @2 NG @5 01
C03 01  2  SPA  @0 Nueva Gales del Sur @2 NG @5 01
C03 02  2  FRE  @0 Etude expérimentale @5 02
C03 02  2  ENG  @0 experimental studies @5 02
C03 03  2  FRE  @0 Propriété physicochimique @5 03
C03 03  2  ENG  @0 physicochemical properties @5 03
C03 03  2  SPA  @0 Propiedad fisicoquímica @5 03
C03 04  2  FRE  @0 Porosité @5 04
C03 04  2  ENG  @0 porosity @5 04
C03 04  2  SPA  @0 Porosidad @5 04
C03 05  2  FRE  @0 Sol @5 05
C03 05  2  ENG  @0 soils @5 05
C03 05  2  SPA  @0 Suelo @5 05
C03 06  2  FRE  @0 Propriété physique @5 06
C03 06  2  ENG  @0 physical properties @5 06
C03 06  2  SPA  @0 Propiedad física @5 06
C03 07  2  FRE  @0 Terrain couverture @5 07
C03 07  2  ENG  @0 overburden @5 07
C03 08  2  FRE  @0 Etude laboratoire @5 08
C03 08  2  ENG  @0 laboratory studies @5 08
C03 09  2  FRE  @0 Pluie @5 09
C03 09  2  ENG  @0 rainfall @5 09
C03 09  2  SPA  @0 Lluvia @5 09
C03 10  2  FRE  @0 Cinétique @5 10
C03 10  2  ENG  @0 kinetics @5 10
C03 10  2  SPA  @0 Cinética @5 10
C03 11  2  FRE  @0 Lame mince @5 11
C03 11  2  ENG  @0 thin sections @5 11
C03 11  2  SPA  @0 Película delgada @5 11
C03 12  2  FRE  @0 Irrigation @5 12
C03 12  2  ENG  @0 irrigation @5 12
C03 12  2  SPA  @0 Irrigación @5 12
C03 13  2  FRE  @0 Limon @5 13
C03 13  2  ENG  @0 loam @5 13
C03 13  2  SPA  @0 Lodo @5 13
C03 14  2  FRE  @0 Simulation numérique @5 15
C03 14  2  ENG  @0 digital simulation @5 15
C03 14  2  SPA  @0 Simulación numérica @5 15
C03 15  2  FRE  @0 Erosion sol @5 17
C03 15  2  ENG  @0 soil erosion @5 17
C03 15  2  SPA  @0 Erosión suelo @5 17
C03 16  2  FRE  @0 Granulat @5 19
C03 16  2  ENG  @0 aggregate @5 19
C03 16  2  SPA  @0 Agregado @5 19
C03 17  2  FRE  @0 Abrasion @5 20
C03 17  2  ENG  @0 abrasion @5 20
C03 17  2  SPA  @0 Abrasión @5 20
C03 18  2  FRE  @0 Compaction @5 21
C03 18  2  ENG  @0 compaction @5 21
C03 18  2  SPA  @0 Compactación @5 21
C03 19  2  FRE  @0 Carotte @5 22
C03 19  2  ENG  @0 drill cores @5 22
C03 19  2  SPA  @0 Testigo @5 22
C03 20  2  FRE  @0 Dispersion @5 23
C03 20  2  ENG  @0 dispersion @5 23
C03 20  2  SPA  @0 Dispersión @5 23
C03 21  2  FRE  @0 Goutte pluie @5 24
C03 21  2  ENG  @0 raindrops @5 24
C03 21  2  SPA  @0 Gota de lluvia @5 24
C03 22  2  FRE  @0 Micromorphologie @5 62
C03 22  2  ENG  @0 micromorphology @5 62
C03 22  2  SPA  @0 Micromorfología @5 62
C03 23  2  FRE  @0 Slumping @5 63
C03 23  2  ENG  @0 slumping @5 63
C03 23  2  SPA  @0 Slumping @5 63
C03 24  2  FRE  @0 Microfissure @5 64
C03 24  2  ENG  @0 microfissures @5 64
C03 24  2  SPA  @0 Microfisura @5 64
C06       @0 ILS @0 TAS
C07 01  2  FRE  @0 Australie @2 NG
C07 01  2  ENG  @0 Australia @2 NG
C07 01  2  SPA  @0 Australia @2 NG
C07 02  2  FRE  @0 Australasie
C07 02  2  ENG  @0 Australasia
C07 02  2  SPA  @0 Australasia
N21       @1 089
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0138847 INIST
ET : Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions
AU : BRESSON (L. M.); MORAN (C. J.)
AF : UMR INRA/INAPG Environnement et Grandes Cultures/78850 Thiverval-Grignon/France (1 aut.); CSIRO Land and Water GPO Box 1660/Canberra, ACT 2601/Australie (2 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2004; Vol. 118; No. 3-4; Pp. 277-288; Bibl. 33 ref.
LA : Anglais
EA : Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.
CC : 226C03; 001E01P03
FD : Nouvelle Galles du Sud; Etude expérimentale; Propriété physicochimique; Porosité; Sol; Propriété physique; Terrain couverture; Etude laboratoire; Pluie; Cinétique; Lame mince; Irrigation; Limon; Simulation numérique; Erosion sol; Granulat; Abrasion; Compaction; Carotte; Dispersion; Goutte pluie; Micromorphologie; Slumping; Microfissure
FG : Australie; Australasie
ED : New South Wales; experimental studies; physicochemical properties; porosity; soils; physical properties; overburden; laboratory studies; rainfall; kinetics; thin sections; irrigation; loam; digital simulation; soil erosion; aggregate; abrasion; compaction; drill cores; dispersion; raindrops; micromorphology; slumping; microfissures
EG : Australia; Australasia
SD : Nueva Gales del Sur; Propiedad fisicoquímica; Porosidad; Suelo; Propiedad física; Lluvia; Cinética; Película delgada; Irrigación; Lodo; Simulación numérica; Erosión suelo; Agregado; Abrasión; Compactación; Testigo; Dispersión; Gota de lluvia; Micromorfología; Slumping; Microfisura
LO : INIST-3607.354000116350920100
ID : 04-0138847

Links to Exploration step

Pascal:04-0138847

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions</title>
<author>
<name sortKey="Bresson, L M" sort="Bresson, L M" uniqKey="Bresson L" first="L. M." last="Bresson">L. M. Bresson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UMR INRA/INAPG Environnement et Grandes Cultures</s1>
<s2>78850 Thiverval-Grignon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moran, C J" sort="Moran, C J" uniqKey="Moran C" first="C. J." last="Moran">C. J. Moran</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Land and Water GPO Box 1660</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0138847</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0138847 INIST</idno>
<idno type="RBID">Pascal:04-0138847</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005021</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions</title>
<author>
<name sortKey="Bresson, L M" sort="Bresson, L M" uniqKey="Bresson L" first="L. M." last="Bresson">L. M. Bresson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UMR INRA/INAPG Environnement et Grandes Cultures</s1>
<s2>78850 Thiverval-Grignon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moran, C J" sort="Moran, C J" uniqKey="Moran C" first="C. J." last="Moran">C. J. Moran</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Land and Water GPO Box 1660</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>New South Wales</term>
<term>abrasion</term>
<term>aggregate</term>
<term>compaction</term>
<term>digital simulation</term>
<term>dispersion</term>
<term>drill cores</term>
<term>experimental studies</term>
<term>irrigation</term>
<term>kinetics</term>
<term>laboratory studies</term>
<term>loam</term>
<term>microfissures</term>
<term>micromorphology</term>
<term>overburden</term>
<term>physical properties</term>
<term>physicochemical properties</term>
<term>porosity</term>
<term>raindrops</term>
<term>rainfall</term>
<term>slumping</term>
<term>soil erosion</term>
<term>soils</term>
<term>thin sections</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nouvelle Galles du Sud</term>
<term>Etude expérimentale</term>
<term>Propriété physicochimique</term>
<term>Porosité</term>
<term>Sol</term>
<term>Propriété physique</term>
<term>Terrain couverture</term>
<term>Etude laboratoire</term>
<term>Pluie</term>
<term>Cinétique</term>
<term>Lame mince</term>
<term>Irrigation</term>
<term>Limon</term>
<term>Simulation numérique</term>
<term>Erosion sol</term>
<term>Granulat</term>
<term>Abrasion</term>
<term>Compaction</term>
<term>Carotte</term>
<term>Dispersion</term>
<term>Goutte pluie</term>
<term>Micromorphologie</term>
<term>Slumping</term>
<term>Microfissure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0016-7061</s0>
</fA01>
<fA02 i1="01">
<s0>GEDMAB</s0>
</fA02>
<fA03 i2="1">
<s0>Geoderma : (Amst.)</s0>
</fA03>
<fA05>
<s2>118</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRESSON (L. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MORAN (C. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>UMR INRA/INAPG Environnement et Grandes Cultures</s1>
<s2>78850 Thiverval-Grignon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CSIRO Land and Water GPO Box 1660</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>277-288</s1>
<s7>2</s7>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3607</s2>
<s5>354000116350920100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0138847</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Geoderma : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01P03</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Nouvelle Galles du Sud</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>New South Wales</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Nueva Gales del Sur</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Propriété physicochimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>physicochemical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Propiedad fisicoquímica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Porosité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>porosity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Porosidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Sol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>soils</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Suelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Propriété physique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>physical properties</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Propiedad física</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Terrain couverture</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>overburden</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Etude laboratoire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>laboratory studies</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Pluie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>rainfall</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Lluvia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Cinétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>kinetics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Cinética</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Lame mince</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>thin sections</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Película delgada</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Irrigation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>irrigation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Irrigación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Limon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>loam</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Lodo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Simulation numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>digital simulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Simulación numérica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Erosion sol</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>soil erosion</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Erosión suelo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Granulat</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>aggregate</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Agregado</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Abrasion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>abrasion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Abrasión</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Compaction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>compaction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Compactación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Carotte</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>drill cores</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Testigo</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Dispersion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>dispersion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Dispersión</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Goutte pluie</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>raindrops</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Gota de lluvia</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Micromorphologie</s0>
<s5>62</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>micromorphology</s0>
<s5>62</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Micromorfología</s0>
<s5>62</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Slumping</s0>
<s5>63</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>slumping</s0>
<s5>63</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Slumping</s0>
<s5>63</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Microfissure</s0>
<s5>64</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>microfissures</s0>
<s5>64</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Microfisura</s0>
<s5>64</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>089</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0138847 INIST</NO>
<ET>Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions</ET>
<AU>BRESSON (L. M.); MORAN (C. J.)</AU>
<AF>UMR INRA/INAPG Environnement et Grandes Cultures/78850 Thiverval-Grignon/France (1 aut.); CSIRO Land and Water GPO Box 1660/Canberra, ACT 2601/Australie (2 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2004; Vol. 118; No. 3-4; Pp. 277-288; Bibl. 33 ref.</SO>
<LA>Anglais</LA>
<EA>Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states.</EA>
<CC>226C03; 001E01P03</CC>
<FD>Nouvelle Galles du Sud; Etude expérimentale; Propriété physicochimique; Porosité; Sol; Propriété physique; Terrain couverture; Etude laboratoire; Pluie; Cinétique; Lame mince; Irrigation; Limon; Simulation numérique; Erosion sol; Granulat; Abrasion; Compaction; Carotte; Dispersion; Goutte pluie; Micromorphologie; Slumping; Microfissure</FD>
<FG>Australie; Australasie</FG>
<ED>New South Wales; experimental studies; physicochemical properties; porosity; soils; physical properties; overburden; laboratory studies; rainfall; kinetics; thin sections; irrigation; loam; digital simulation; soil erosion; aggregate; abrasion; compaction; drill cores; dispersion; raindrops; micromorphology; slumping; microfissures</ED>
<EG>Australia; Australasia</EG>
<SD>Nueva Gales del Sur; Propiedad fisicoquímica; Porosidad; Suelo; Propiedad física; Lluvia; Cinética; Película delgada; Irrigación; Lodo; Simulación numérica; Erosión suelo; Agregado; Abrasión; Compactación; Testigo; Dispersión; Gota de lluvia; Micromorfología; Slumping; Microfisura</SD>
<LO>INIST-3607.354000116350920100</LO>
<ID>04-0138847</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0138847
   |texte=   Micromorphological study of slumping in a hardsetting seedbed under various wetting conditions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024