Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

Identifieur interne : 004701 ( PascalFrancis/Corpus ); précédent : 004700; suivant : 004702

Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

Auteurs : T. E. Evans ; R. A. Moyer ; J. G. Watkins ; T. H. Osborne ; P. R. Thomas ; M. Becoulet ; J. A. Boedo ; E. J. Doyle ; M. E. Fenstermacher ; K. H. Finken ; R. J. Groebner ; M. Groth ; J. H. Harris ; G. L. Jackson ; R. J. La Haye ; C. J. Lasnier ; S. Masuzaki ; N. Ohyabu ; D. G. Pretty ; H. Reimerdes ; T. L. Rhodes ; D. L. Rudakov ; M. J. Schaffer ; M. R. Wade ; G. Wang ; W. P. West ; L. Zeng

Source :

RBID : Pascal:05-0468530

Descripteurs français

English descriptors

Abstract

Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τE) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψN ≤ 1.0) when q95 = 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, βN, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τE ) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τE. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0029-5515
A02 01      @0 NUFUAU
A03   1    @0 Nucl. fus.
A05       @2 45
A06       @2 7
A08 01  1  ENG  @1 Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas
A11 01  1    @1 EVANS (T. E.)
A11 02  1    @1 MOYER (R. A.)
A11 03  1    @1 WATKINS (J. G.)
A11 04  1    @1 OSBORNE (T. H.)
A11 05  1    @1 THOMAS (P. R.)
A11 06  1    @1 BECOULET (M.)
A11 07  1    @1 BOEDO (J. A.)
A11 08  1    @1 DOYLE (E. J.)
A11 09  1    @1 FENSTERMACHER (M. E.)
A11 10  1    @1 FINKEN (K. H.)
A11 11  1    @1 GROEBNER (R. J.)
A11 12  1    @1 GROTH (M.)
A11 13  1    @1 HARRIS (J. H.)
A11 14  1    @1 JACKSON (G. L.)
A11 15  1    @1 LA HAYE (R. J.)
A11 16  1    @1 LASNIER (C. J.)
A11 17  1    @1 MASUZAKI (S.)
A11 18  1    @1 OHYABU (N.)
A11 19  1    @1 PRETTY (D. G.)
A11 20  1    @1 REIMERDES (H.)
A11 21  1    @1 RHODES (T. L.)
A11 22  1    @1 RUDAKOV (D. L.)
A11 23  1    @1 SCHAFFER (M. J.)
A11 24  1    @1 WADE (M. R.)
A11 25  1    @1 WANG (G.)
A11 26  1    @1 WEST (W. P.)
A11 27  1    @1 ZENG (L.)
A14 01      @1 General Atomics, PO Box 85608 @2 San Diego, CA 92186-5608 @3 USA @Z 1 aut. @Z 4 aut. @Z 11 aut. @Z 14 aut. @Z 15 aut. @Z 23 aut. @Z 26 aut.
A14 02      @1 University of California San Diego @2 La Jolla, California @3 USA @Z 2 aut. @Z 7 aut. @Z 22 aut.
A14 03      @1 Sandia National Laboratory @2 Albuquerque, New Mexico @3 USA @Z 3 aut.
A14 04      @1 CEA-Cadarache Euratom Association @2 Cadarache @3 FRA @Z 5 aut. @Z 6 aut.
A14 05      @1 University of California @2 Los Angeles, California @3 USA @Z 8 aut. @Z 21 aut. @Z 25 aut. @Z 27 aut.
A14 06      @1 Lawrence Livermore National Laboratory @2 Livermore, California @3 USA @Z 9 aut. @Z 12 aut. @Z 16 aut.
A14 07      @1 FZ-Jülich Euratom Association @2 Jülich @3 DEU @Z 10 aut.
A14 08      @1 Australian National University @2 Canberra @3 AUS @Z 13 aut. @Z 19 aut.
A14 09      @1 National Institute for Fusion Science @2 Gifu-ken @3 JPN @Z 17 aut. @Z 18 aut.
A14 10      @1 Columbia University @2 New York, New York @3 USA @Z 20 aut.
A14 11      @1 Oak Ridge National Laboratory @2 Oak Ridge, Tennessee @3 USA @Z 24 aut.
A20       @1 595-607
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 1614 @5 354000132319240080
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 05-0468530
A60       @1 P
A61       @0 A
A64 01  1    @0 Nuclear fusion
A66 01      @0 GBR
C01 01    ENG  @0 Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τE) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψN ≤ 1.0) when q95 = 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, βN, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τE ) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τE. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.
C02 01  3    @0 001B50B55F
C02 02  3    @0 001B50B55
C03 01  X  FRE  @0 Plasma confiné @5 50
C03 01  X  ENG  @0 Confined plasma @5 50
C03 01  X  SPA  @0 Plasma confinado @5 50
C03 02  3  FRE  @0 Confinement magnétique @5 51
C03 02  3  ENG  @0 Magnetic confinement @5 51
C03 03  3  FRE  @0 Mode localisé bord @5 52
C03 03  3  ENG  @0 Edge localized modes @5 52
C03 04  3  FRE  @0 Phénomène transport plasma @5 53
C03 04  3  ENG  @0 Plasma transport processes @5 53
C03 05  3  FRE  @0 Champ magnétique @5 54
C03 05  3  ENG  @0 Magnetic fields @5 54
C03 06  3  FRE  @0 Réacteur fusion nucléaire @5 55
C03 06  3  ENG  @0 Thermonuclear reactors @5 55
C03 07  3  FRE  @0 Instabilité plasma @5 56
C03 07  3  ENG  @0 Plasma instability @5 56
C03 08  3  FRE  @0 Réacteur tokamak @5 57
C03 08  3  ENG  @0 Tokamak type reactors @5 57
C03 09  3  FRE  @0 Ecoulement plasma @5 58
C03 09  3  ENG  @0 Plasma flow @5 58
C03 10  3  FRE  @0 Temps confinement @5 59
C03 10  3  ENG  @0 Confinement time @5 59
C03 11  X  FRE  @0 Confinement énergie @5 60
C03 11  X  ENG  @0 Energy confinement @5 60
C03 11  X  SPA  @0 Confinamiento energía @5 60
C03 12  3  FRE  @0 Champ intense @5 61
C03 12  3  ENG  @0 High field @5 61
C03 13  X  FRE  @0 Ligne magnétique @5 62
C03 13  X  ENG  @0 Magnetic line @5 62
C03 13  X  SPA  @0 Línea magnética @5 62
C03 14  3  FRE  @0 Ilot magnétique @5 63
C03 14  3  ENG  @0 Magnetic islands @5 63
C03 15  3  FRE  @0 Confinement plasma mode H @5 64
C03 15  3  ENG  @0 H-mode plasma confinement @5 64
C03 16  3  FRE  @0 Etude expérimentale @5 65
C03 16  3  ENG  @0 Experimental study @5 65
C03 17  3  FRE  @0 5255F @2 PAC @4 INC @5 91
C03 18  3  FRE  @0 5255R @2 PAC @4 INC @5 92
N21       @1 332
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 05-0468530 INIST
ET : Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas
AU : EVANS (T. E.); MOYER (R. A.); WATKINS (J. G.); OSBORNE (T. H.); THOMAS (P. R.); BECOULET (M.); BOEDO (J. A.); DOYLE (E. J.); FENSTERMACHER (M. E.); FINKEN (K. H.); GROEBNER (R. J.); GROTH (M.); HARRIS (J. H.); JACKSON (G. L.); LA HAYE (R. J.); LASNIER (C. J.); MASUZAKI (S.); OHYABU (N.); PRETTY (D. G.); REIMERDES (H.); RHODES (T. L.); RUDAKOV (D. L.); SCHAFFER (M. J.); WADE (M. R.); WANG (G.); WEST (W. P.); ZENG (L.)
AF : General Atomics, PO Box 85608/San Diego, CA 92186-5608/Etats-Unis (1 aut., 4 aut., 11 aut., 14 aut., 15 aut., 23 aut., 26 aut.); University of California San Diego/La Jolla, California/Etats-Unis (2 aut., 7 aut., 22 aut.); Sandia National Laboratory/Albuquerque, New Mexico/Etats-Unis (3 aut.); CEA-Cadarache Euratom Association/Cadarache/France (5 aut., 6 aut.); University of California/Los Angeles, California/Etats-Unis (8 aut., 21 aut., 25 aut., 27 aut.); Lawrence Livermore National Laboratory/Livermore, California/Etats-Unis (9 aut., 12 aut., 16 aut.); FZ-Jülich Euratom Association/Jülich/Allemagne (10 aut.); Australian National University/Canberra/Australie (13 aut., 19 aut.); National Institute for Fusion Science/Gifu-ken/Japon (17 aut., 18 aut.); Columbia University/New York, New York/Etats-Unis (20 aut.); Oak Ridge National Laboratory/Oak Ridge, Tennessee/Etats-Unis (24 aut.)
DT : Publication en série; Niveau analytique
SO : Nuclear fusion; ISSN 0029-5515; Coden NUFUAU; Royaume-Uni; Da. 2005; Vol. 45; No. 7; Pp. 595-607; Bibl. 20 ref.
LA : Anglais
EA : Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τE) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψN ≤ 1.0) when q95 = 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, βN, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τE ) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τE. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.
CC : 001B50B55F; 001B50B55
FD : Plasma confiné; Confinement magnétique; Mode localisé bord; Phénomène transport plasma; Champ magnétique; Réacteur fusion nucléaire; Instabilité plasma; Réacteur tokamak; Ecoulement plasma; Temps confinement; Confinement énergie; Champ intense; Ligne magnétique; Ilot magnétique; Confinement plasma mode H; Etude expérimentale; 5255F; 5255R
ED : Confined plasma; Magnetic confinement; Edge localized modes; Plasma transport processes; Magnetic fields; Thermonuclear reactors; Plasma instability; Tokamak type reactors; Plasma flow; Confinement time; Energy confinement; High field; Magnetic line; Magnetic islands; H-mode plasma confinement; Experimental study
SD : Plasma confinado; Confinamiento energía; Línea magnética
LO : INIST-1614.354000132319240080
ID : 05-0468530

Links to Exploration step

Pascal:05-0468530

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas</title>
<author>
<name sortKey="Evans, T E" sort="Evans, T E" uniqKey="Evans T" first="T. E." last="Evans">T. E. Evans</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moyer, R A" sort="Moyer, R A" uniqKey="Moyer R" first="R. A." last="Moyer">R. A. Moyer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Watkins, J G" sort="Watkins, J G" uniqKey="Watkins J" first="J. G." last="Watkins">J. G. Watkins</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Sandia National Laboratory</s1>
<s2>Albuquerque, New Mexico</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Osborne, T H" sort="Osborne, T H" uniqKey="Osborne T" first="T. H." last="Osborne">T. H. Osborne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thomas, P R" sort="Thomas, P R" uniqKey="Thomas P" first="P. R." last="Thomas">P. R. Thomas</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CEA-Cadarache Euratom Association</s1>
<s2>Cadarache</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Becoulet, M" sort="Becoulet, M" uniqKey="Becoulet M" first="M." last="Becoulet">M. Becoulet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CEA-Cadarache Euratom Association</s1>
<s2>Cadarache</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boedo, J A" sort="Boedo, J A" uniqKey="Boedo J" first="J. A." last="Boedo">J. A. Boedo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Doyle, E J" sort="Doyle, E J" uniqKey="Doyle E" first="E. J." last="Doyle">E. J. Doyle</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fenstermacher, M E" sort="Fenstermacher, M E" uniqKey="Fenstermacher M" first="M. E." last="Fenstermacher">M. E. Fenstermacher</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Finken, K H" sort="Finken, K H" uniqKey="Finken K" first="K. H." last="Finken">K. H. Finken</name>
<affiliation>
<inist:fA14 i1="07">
<s1>FZ-Jülich Euratom Association</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groebner, R J" sort="Groebner, R J" uniqKey="Groebner R" first="R. J." last="Groebner">R. J. Groebner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groth, M" sort="Groth, M" uniqKey="Groth M" first="M." last="Groth">M. Groth</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harris, J H" sort="Harris, J H" uniqKey="Harris J" first="J. H." last="Harris">J. H. Harris</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Australian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>13 aut.</sZ>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jackson, G L" sort="Jackson, G L" uniqKey="Jackson G" first="G. L." last="Jackson">G. L. Jackson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="La Haye, R J" sort="La Haye, R J" uniqKey="La Haye R" first="R. J." last="La Haye">R. J. La Haye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lasnier, C J" sort="Lasnier, C J" uniqKey="Lasnier C" first="C. J." last="Lasnier">C. J. Lasnier</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Masuzaki, S" sort="Masuzaki, S" uniqKey="Masuzaki S" first="S." last="Masuzaki">S. Masuzaki</name>
<affiliation>
<inist:fA14 i1="09">
<s1>National Institute for Fusion Science</s1>
<s2>Gifu-ken</s2>
<s3>JPN</s3>
<sZ>17 aut.</sZ>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ohyabu, N" sort="Ohyabu, N" uniqKey="Ohyabu N" first="N." last="Ohyabu">N. Ohyabu</name>
<affiliation>
<inist:fA14 i1="09">
<s1>National Institute for Fusion Science</s1>
<s2>Gifu-ken</s2>
<s3>JPN</s3>
<sZ>17 aut.</sZ>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pretty, D G" sort="Pretty, D G" uniqKey="Pretty D" first="D. G." last="Pretty">D. G. Pretty</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Australian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>13 aut.</sZ>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reimerdes, H" sort="Reimerdes, H" uniqKey="Reimerdes H" first="H." last="Reimerdes">H. Reimerdes</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Columbia University</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rhodes, T L" sort="Rhodes, T L" uniqKey="Rhodes T" first="T. L." last="Rhodes">T. L. Rhodes</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudakov, D L" sort="Rudakov, D L" uniqKey="Rudakov D" first="D. L." last="Rudakov">D. L. Rudakov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schaffer, M J" sort="Schaffer, M J" uniqKey="Schaffer M" first="M. J." last="Schaffer">M. J. Schaffer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wade, M R" sort="Wade, M R" uniqKey="Wade M" first="M. R." last="Wade">M. R. Wade</name>
<affiliation>
<inist:fA14 i1="11">
<s1>Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, Tennessee</s2>
<s3>USA</s3>
<sZ>24 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, G" sort="Wang, G" uniqKey="Wang G" first="G." last="Wang">G. Wang</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="West, W P" sort="West, W P" uniqKey="West W" first="W. P." last="West">W. P. West</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zeng, L" sort="Zeng, L" uniqKey="Zeng L" first="L." last="Zeng">L. Zeng</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0468530</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0468530 INIST</idno>
<idno type="RBID">Pascal:05-0468530</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004701</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas</title>
<author>
<name sortKey="Evans, T E" sort="Evans, T E" uniqKey="Evans T" first="T. E." last="Evans">T. E. Evans</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moyer, R A" sort="Moyer, R A" uniqKey="Moyer R" first="R. A." last="Moyer">R. A. Moyer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Watkins, J G" sort="Watkins, J G" uniqKey="Watkins J" first="J. G." last="Watkins">J. G. Watkins</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Sandia National Laboratory</s1>
<s2>Albuquerque, New Mexico</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Osborne, T H" sort="Osborne, T H" uniqKey="Osborne T" first="T. H." last="Osborne">T. H. Osborne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thomas, P R" sort="Thomas, P R" uniqKey="Thomas P" first="P. R." last="Thomas">P. R. Thomas</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CEA-Cadarache Euratom Association</s1>
<s2>Cadarache</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Becoulet, M" sort="Becoulet, M" uniqKey="Becoulet M" first="M." last="Becoulet">M. Becoulet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CEA-Cadarache Euratom Association</s1>
<s2>Cadarache</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boedo, J A" sort="Boedo, J A" uniqKey="Boedo J" first="J. A." last="Boedo">J. A. Boedo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Doyle, E J" sort="Doyle, E J" uniqKey="Doyle E" first="E. J." last="Doyle">E. J. Doyle</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fenstermacher, M E" sort="Fenstermacher, M E" uniqKey="Fenstermacher M" first="M. E." last="Fenstermacher">M. E. Fenstermacher</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Finken, K H" sort="Finken, K H" uniqKey="Finken K" first="K. H." last="Finken">K. H. Finken</name>
<affiliation>
<inist:fA14 i1="07">
<s1>FZ-Jülich Euratom Association</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groebner, R J" sort="Groebner, R J" uniqKey="Groebner R" first="R. J." last="Groebner">R. J. Groebner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groth, M" sort="Groth, M" uniqKey="Groth M" first="M." last="Groth">M. Groth</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harris, J H" sort="Harris, J H" uniqKey="Harris J" first="J. H." last="Harris">J. H. Harris</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Australian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>13 aut.</sZ>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jackson, G L" sort="Jackson, G L" uniqKey="Jackson G" first="G. L." last="Jackson">G. L. Jackson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="La Haye, R J" sort="La Haye, R J" uniqKey="La Haye R" first="R. J." last="La Haye">R. J. La Haye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lasnier, C J" sort="Lasnier, C J" uniqKey="Lasnier C" first="C. J." last="Lasnier">C. J. Lasnier</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Masuzaki, S" sort="Masuzaki, S" uniqKey="Masuzaki S" first="S." last="Masuzaki">S. Masuzaki</name>
<affiliation>
<inist:fA14 i1="09">
<s1>National Institute for Fusion Science</s1>
<s2>Gifu-ken</s2>
<s3>JPN</s3>
<sZ>17 aut.</sZ>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ohyabu, N" sort="Ohyabu, N" uniqKey="Ohyabu N" first="N." last="Ohyabu">N. Ohyabu</name>
<affiliation>
<inist:fA14 i1="09">
<s1>National Institute for Fusion Science</s1>
<s2>Gifu-ken</s2>
<s3>JPN</s3>
<sZ>17 aut.</sZ>
<sZ>18 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pretty, D G" sort="Pretty, D G" uniqKey="Pretty D" first="D. G." last="Pretty">D. G. Pretty</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Australian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>13 aut.</sZ>
<sZ>19 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reimerdes, H" sort="Reimerdes, H" uniqKey="Reimerdes H" first="H." last="Reimerdes">H. Reimerdes</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Columbia University</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rhodes, T L" sort="Rhodes, T L" uniqKey="Rhodes T" first="T. L." last="Rhodes">T. L. Rhodes</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudakov, D L" sort="Rudakov, D L" uniqKey="Rudakov D" first="D. L." last="Rudakov">D. L. Rudakov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schaffer, M J" sort="Schaffer, M J" uniqKey="Schaffer M" first="M. J." last="Schaffer">M. J. Schaffer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wade, M R" sort="Wade, M R" uniqKey="Wade M" first="M. R." last="Wade">M. R. Wade</name>
<affiliation>
<inist:fA14 i1="11">
<s1>Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, Tennessee</s2>
<s3>USA</s3>
<sZ>24 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, G" sort="Wang, G" uniqKey="Wang G" first="G." last="Wang">G. Wang</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="West, W P" sort="West, W P" uniqKey="West W" first="W. P." last="West">W. P. West</name>
<affiliation>
<inist:fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zeng, L" sort="Zeng, L" uniqKey="Zeng L" first="L." last="Zeng">L. Zeng</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Nuclear fusion</title>
<title level="j" type="abbreviated">Nucl. fus.</title>
<idno type="ISSN">0029-5515</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Nuclear fusion</title>
<title level="j" type="abbreviated">Nucl. fus.</title>
<idno type="ISSN">0029-5515</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confined plasma</term>
<term>Confinement time</term>
<term>Edge localized modes</term>
<term>Energy confinement</term>
<term>Experimental study</term>
<term>H-mode plasma confinement</term>
<term>High field</term>
<term>Magnetic confinement</term>
<term>Magnetic fields</term>
<term>Magnetic islands</term>
<term>Magnetic line</term>
<term>Plasma flow</term>
<term>Plasma instability</term>
<term>Plasma transport processes</term>
<term>Thermonuclear reactors</term>
<term>Tokamak type reactors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plasma confiné</term>
<term>Confinement magnétique</term>
<term>Mode localisé bord</term>
<term>Phénomène transport plasma</term>
<term>Champ magnétique</term>
<term>Réacteur fusion nucléaire</term>
<term>Instabilité plasma</term>
<term>Réacteur tokamak</term>
<term>Ecoulement plasma</term>
<term>Temps confinement</term>
<term>Confinement énergie</term>
<term>Champ intense</term>
<term>Ligne magnétique</term>
<term>Ilot magnétique</term>
<term>Confinement plasma mode H</term>
<term>Etude expérimentale</term>
<term>5255F</term>
<term>5255R</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τ
<sub>E</sub>
) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψ
<sub>N</sub>
≤ 1.0) when q
<sub>95</sub>
= 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, β
<sub>N</sub>
, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τ
<sub>E</sub>
) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τ
<sub>E</sub>
. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0029-5515</s0>
</fA01>
<fA02 i1="01">
<s0>NUFUAU</s0>
</fA02>
<fA03 i2="1">
<s0>Nucl. fus.</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EVANS (T. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOYER (R. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WATKINS (J. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OSBORNE (T. H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>THOMAS (P. R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BECOULET (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BOEDO (J. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DOYLE (E. J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>FENSTERMACHER (M. E.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>FINKEN (K. H.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GROEBNER (R. J.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>GROTH (M.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>HARRIS (J. H.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>JACKSON (G. L.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>LA HAYE (R. J.)</s1>
</fA11>
<fA11 i1="16" i2="1">
<s1>LASNIER (C. J.)</s1>
</fA11>
<fA11 i1="17" i2="1">
<s1>MASUZAKI (S.)</s1>
</fA11>
<fA11 i1="18" i2="1">
<s1>OHYABU (N.)</s1>
</fA11>
<fA11 i1="19" i2="1">
<s1>PRETTY (D. G.)</s1>
</fA11>
<fA11 i1="20" i2="1">
<s1>REIMERDES (H.)</s1>
</fA11>
<fA11 i1="21" i2="1">
<s1>RHODES (T. L.)</s1>
</fA11>
<fA11 i1="22" i2="1">
<s1>RUDAKOV (D. L.)</s1>
</fA11>
<fA11 i1="23" i2="1">
<s1>SCHAFFER (M. J.)</s1>
</fA11>
<fA11 i1="24" i2="1">
<s1>WADE (M. R.)</s1>
</fA11>
<fA11 i1="25" i2="1">
<s1>WANG (G.)</s1>
</fA11>
<fA11 i1="26" i2="1">
<s1>WEST (W. P.)</s1>
</fA11>
<fA11 i1="27" i2="1">
<s1>ZENG (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>General Atomics, PO Box 85608</s1>
<s2>San Diego, CA 92186-5608</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>23 aut.</sZ>
<sZ>26 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of California San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>22 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Sandia National Laboratory</s1>
<s2>Albuquerque, New Mexico</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CEA-Cadarache Euratom Association</s1>
<s2>Cadarache</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of California</s1>
<s2>Los Angeles, California</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>21 aut.</sZ>
<sZ>25 aut.</sZ>
<sZ>27 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, California</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>16 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>FZ-Jülich Euratom Association</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Australian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>13 aut.</sZ>
<sZ>19 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>National Institute for Fusion Science</s1>
<s2>Gifu-ken</s2>
<s3>JPN</s3>
<sZ>17 aut.</sZ>
<sZ>18 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>Columbia University</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>20 aut.</sZ>
</fA14>
<fA14 i1="11">
<s1>Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, Tennessee</s2>
<s3>USA</s3>
<sZ>24 aut.</sZ>
</fA14>
<fA20>
<s1>595-607</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1614</s2>
<s5>354000132319240080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0468530</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nuclear fusion</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τ
<sub>E</sub>
) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψ
<sub>N</sub>
≤ 1.0) when q
<sub>95</sub>
= 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, β
<sub>N</sub>
, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τ
<sub>E</sub>
) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τ
<sub>E</sub>
. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B55F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B50B55</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Plasma confiné</s0>
<s5>50</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Confined plasma</s0>
<s5>50</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Plasma confinado</s0>
<s5>50</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Confinement magnétique</s0>
<s5>51</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetic confinement</s0>
<s5>51</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mode localisé bord</s0>
<s5>52</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Edge localized modes</s0>
<s5>52</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Phénomène transport plasma</s0>
<s5>53</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Plasma transport processes</s0>
<s5>53</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Champ magnétique</s0>
<s5>54</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic fields</s0>
<s5>54</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réacteur fusion nucléaire</s0>
<s5>55</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thermonuclear reactors</s0>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Instabilité plasma</s0>
<s5>56</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Plasma instability</s0>
<s5>56</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Réacteur tokamak</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Tokamak type reactors</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ecoulement plasma</s0>
<s5>58</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Plasma flow</s0>
<s5>58</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Temps confinement</s0>
<s5>59</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Confinement time</s0>
<s5>59</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Confinement énergie</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Energy confinement</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Confinamiento energía</s0>
<s5>60</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Champ intense</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>High field</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ligne magnétique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Magnetic line</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Línea magnética</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Ilot magnétique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Magnetic islands</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Confinement plasma mode H</s0>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>H-mode plasma confinement</s0>
<s5>64</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>65</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>5255F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>5255R</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>332</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0468530 INIST</NO>
<ET>Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas</ET>
<AU>EVANS (T. E.); MOYER (R. A.); WATKINS (J. G.); OSBORNE (T. H.); THOMAS (P. R.); BECOULET (M.); BOEDO (J. A.); DOYLE (E. J.); FENSTERMACHER (M. E.); FINKEN (K. H.); GROEBNER (R. J.); GROTH (M.); HARRIS (J. H.); JACKSON (G. L.); LA HAYE (R. J.); LASNIER (C. J.); MASUZAKI (S.); OHYABU (N.); PRETTY (D. G.); REIMERDES (H.); RHODES (T. L.); RUDAKOV (D. L.); SCHAFFER (M. J.); WADE (M. R.); WANG (G.); WEST (W. P.); ZENG (L.)</AU>
<AF>General Atomics, PO Box 85608/San Diego, CA 92186-5608/Etats-Unis (1 aut., 4 aut., 11 aut., 14 aut., 15 aut., 23 aut., 26 aut.); University of California San Diego/La Jolla, California/Etats-Unis (2 aut., 7 aut., 22 aut.); Sandia National Laboratory/Albuquerque, New Mexico/Etats-Unis (3 aut.); CEA-Cadarache Euratom Association/Cadarache/France (5 aut., 6 aut.); University of California/Los Angeles, California/Etats-Unis (8 aut., 21 aut., 25 aut., 27 aut.); Lawrence Livermore National Laboratory/Livermore, California/Etats-Unis (9 aut., 12 aut., 16 aut.); FZ-Jülich Euratom Association/Jülich/Allemagne (10 aut.); Australian National University/Canberra/Australie (13 aut., 19 aut.); National Institute for Fusion Science/Gifu-ken/Japon (17 aut., 18 aut.); Columbia University/New York, New York/Etats-Unis (20 aut.); Oak Ridge National Laboratory/Oak Ridge, Tennessee/Etats-Unis (24 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Nuclear fusion; ISSN 0029-5515; Coden NUFUAU; Royaume-Uni; Da. 2005; Vol. 45; No. 7; Pp. 595-607; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τ
<sub>E</sub>
) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on magnetic field line modelling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ ψ
<sub>N</sub>
≤ 1.0) when q
<sub>95</sub>
= 3.7 ± 0.2, creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, β
<sub>N</sub>
, H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs (Δt > 4-6 τ
<sub>E</sub>
) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas, including cases matching the baseline ITER scenario 2 flux surface shape. In low triangularity, lower single null plasmas, with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τ
<sub>E</sub>
. Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.</EA>
<CC>001B50B55F; 001B50B55</CC>
<FD>Plasma confiné; Confinement magnétique; Mode localisé bord; Phénomène transport plasma; Champ magnétique; Réacteur fusion nucléaire; Instabilité plasma; Réacteur tokamak; Ecoulement plasma; Temps confinement; Confinement énergie; Champ intense; Ligne magnétique; Ilot magnétique; Confinement plasma mode H; Etude expérimentale; 5255F; 5255R</FD>
<ED>Confined plasma; Magnetic confinement; Edge localized modes; Plasma transport processes; Magnetic fields; Thermonuclear reactors; Plasma instability; Tokamak type reactors; Plasma flow; Confinement time; Energy confinement; High field; Magnetic line; Magnetic islands; H-mode plasma confinement; Experimental study</ED>
<SD>Plasma confinado; Confinamiento energía; Línea magnética</SD>
<LO>INIST-1614.354000132319240080</LO>
<ID>05-0468530</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004701 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004701 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0468530
   |texte=   Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024