Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?

Identifieur interne : 004512 ( PascalFrancis/Corpus ); précédent : 004511; suivant : 004513

Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?

Auteurs : Laure Lejeune ; David I. Anderson ; Joseph J. Campos ; David C. Witherington ; Ichiro Uchiyama ; Marianne Barbu-Roth

Source :

RBID : Pascal:06-0151847

Descripteurs français

English descriptors

Abstract

Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0167-9457
A02 01      @0 HMSCDO
A03   1    @0 Hum. mov. sci.
A05       @2 25
A06       @2 1
A08 01  1  ENG  @1 Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?
A09 01  1  ENG  @1 Approaches to sensory-motor development in infants and children
A11 01  1    @1 LEJEUNE (Laure)
A11 02  1    @1 ANDERSON (David I.)
A11 03  1    @1 CAMPOS (Joseph J.)
A11 04  1    @1 WITHERINGTON (David C.)
A11 05  1    @1 UCHIYAMA (Ichiro)
A11 06  1    @1 BARBU-ROTH (Marianne)
A12 01  1    @1 PIEK (Jan P.) @9 ed.
A12 02  1    @1 GASSON (Natalie) @9 ed.
A12 03  1    @1 GARRY (Michael) @9 ed.
A14 01      @1 Institute of Human Development, University of California, Berkeley, Tolman Hall @2 Berkeley, CA 94720-1690 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue @2 San Francisco, CA 94132-4161 @3 USA @Z 2 aut.
A14 03      @1 Department of Psychology, Logan Hall, University of New Mexico @2 Albuquerque, NM 87131-1161 @3 USA @Z 4 aut.
A14 04      @1 Department of Psychology, Doshisha University @2 Kyoto 602-8580 @3 JPN @Z 5 aut.
A14 05      @1 Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant @2 92774 Boulogne Billancourt @3 FRA @Z 6 aut.
A15 01      @1 School of Psychology, Curtin University of Technology @2 Perth 6845 @3 AUS @Z 1 aut. @Z 2 aut.
A15 02      @1 School of Psychology, University of Tasmania @2 Hobart, Tasmania @3 AUS @Z 3 aut.
A18 01  1    @1 Curtin University of Technology. Research Centre for Applied Psychology @2 Perth @3 AUS @9 org-cong.
A20       @1 4-17
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 19996 @5 354000133170040010
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 06-0151847
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Human movement science
A66 01      @0 NLD
C01 01    ENG  @0 Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.
C02 01  X    @0 002A26J03A
C03 01  X  FRE  @0 Enfant @5 01
C03 01  X  ENG  @0 Child @5 01
C03 01  X  SPA  @0 Niño @5 01
C03 02  X  FRE  @0 Développement @5 02
C03 02  X  ENG  @0 Development @5 02
C03 02  X  SPA  @0 Desarrollo @5 02
C03 03  X  FRE  @0 Ajustement postural @5 03
C03 03  X  ENG  @0 Postural fitting @5 03
C03 03  X  SPA  @0 Ajuste postural @5 03
C03 04  X  FRE  @0 Coordination oculomotrice @5 04
C03 04  X  ENG  @0 Oculomotor coordination @5 04
C03 04  X  SPA  @0 Coordinación oculomotora @5 04
C03 05  X  FRE  @0 Couplage @5 05
C03 05  X  ENG  @0 Coupling @5 05
C03 05  X  SPA  @0 Acoplamiento @5 05
C03 06  X  FRE  @0 Posture @5 06
C03 06  X  ENG  @0 Posture @5 06
C03 06  X  SPA  @0 Postura @5 06
C03 07  X  FRE  @0 Locomotion @5 07
C03 07  X  ENG  @0 Locomotion @5 07
C03 07  X  SPA  @0 Locomoción @5 07
C07 01  X  FRE  @0 Homme
C07 01  X  ENG  @0 Human
C07 01  X  SPA  @0 Hombre
N21       @1 093
pR  
A30 01  1  ENG  @1 Motor Control and Human Skill Conference @2 7 @3 Fremantle, Western Australia AUS @4 2005-02-03

Format Inist (serveur)

NO : PASCAL 06-0151847 INIST
ET : Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?
AU : LEJEUNE (Laure); ANDERSON (David I.); CAMPOS (Joseph J.); WITHERINGTON (David C.); UCHIYAMA (Ichiro); BARBU-ROTH (Marianne); PIEK (Jan P.); GASSON (Natalie); GARRY (Michael)
AF : Institute of Human Development, University of California, Berkeley, Tolman Hall/Berkeley, CA 94720-1690/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue/San Francisco, CA 94132-4161/Etats-Unis (2 aut.); Department of Psychology, Logan Hall, University of New Mexico/Albuquerque, NM 87131-1161/Etats-Unis (4 aut.); Department of Psychology, Doshisha University/Kyoto 602-8580/Japon (5 aut.); Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant/92774 Boulogne Billancourt/France (6 aut.); School of Psychology, Curtin University of Technology/Perth 6845/Australie (1 aut., 2 aut.); School of Psychology, University of Tasmania/Hobart, Tasmania/Australie (3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Human movement science; ISSN 0167-9457; Coden HMSCDO; Pays-Bas; Da. 2006; Vol. 25; No. 1; Pp. 4-17; Bibl. 1 p.3/4
LA : Anglais
EA : Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.
CC : 002A26J03A
FD : Enfant; Développement; Ajustement postural; Coordination oculomotrice; Couplage; Posture; Locomotion
FG : Homme
ED : Child; Development; Postural fitting; Oculomotor coordination; Coupling; Posture; Locomotion
EG : Human
SD : Niño; Desarrollo; Ajuste postural; Coordinación oculomotora; Acoplamiento; Postura; Locomoción
LO : INIST-19996.354000133170040010
ID : 06-0151847

Links to Exploration step

Pascal:06-0151847

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?</title>
<author>
<name sortKey="Lejeune, Laure" sort="Lejeune, Laure" uniqKey="Lejeune L" first="Laure" last="Lejeune">Laure Lejeune</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anderson, David I" sort="Anderson, David I" uniqKey="Anderson D" first="David I." last="Anderson">David I. Anderson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue</s1>
<s2>San Francisco, CA 94132-4161</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Campos, Joseph J" sort="Campos, Joseph J" uniqKey="Campos J" first="Joseph J." last="Campos">Joseph J. Campos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Witherington, David C" sort="Witherington, David C" uniqKey="Witherington D" first="David C." last="Witherington">David C. Witherington</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Psychology, Logan Hall, University of New Mexico</s1>
<s2>Albuquerque, NM 87131-1161</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Uchiyama, Ichiro" sort="Uchiyama, Ichiro" uniqKey="Uchiyama I" first="Ichiro" last="Uchiyama">Ichiro Uchiyama</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Psychology, Doshisha University</s1>
<s2>Kyoto 602-8580</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Barbu Roth, Marianne" sort="Barbu Roth, Marianne" uniqKey="Barbu Roth M" first="Marianne" last="Barbu-Roth">Marianne Barbu-Roth</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant</s1>
<s2>92774 Boulogne Billancourt</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0151847</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0151847 INIST</idno>
<idno type="RBID">Pascal:06-0151847</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004512</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?</title>
<author>
<name sortKey="Lejeune, Laure" sort="Lejeune, Laure" uniqKey="Lejeune L" first="Laure" last="Lejeune">Laure Lejeune</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anderson, David I" sort="Anderson, David I" uniqKey="Anderson D" first="David I." last="Anderson">David I. Anderson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue</s1>
<s2>San Francisco, CA 94132-4161</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Campos, Joseph J" sort="Campos, Joseph J" uniqKey="Campos J" first="Joseph J." last="Campos">Joseph J. Campos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Witherington, David C" sort="Witherington, David C" uniqKey="Witherington D" first="David C." last="Witherington">David C. Witherington</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Psychology, Logan Hall, University of New Mexico</s1>
<s2>Albuquerque, NM 87131-1161</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Uchiyama, Ichiro" sort="Uchiyama, Ichiro" uniqKey="Uchiyama I" first="Ichiro" last="Uchiyama">Ichiro Uchiyama</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Psychology, Doshisha University</s1>
<s2>Kyoto 602-8580</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Barbu Roth, Marianne" sort="Barbu Roth, Marianne" uniqKey="Barbu Roth M" first="Marianne" last="Barbu-Roth">Marianne Barbu-Roth</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant</s1>
<s2>92774 Boulogne Billancourt</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Human movement science</title>
<title level="j" type="abbreviated">Hum. mov. sci.</title>
<idno type="ISSN">0167-9457</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Human movement science</title>
<title level="j" type="abbreviated">Hum. mov. sci.</title>
<idno type="ISSN">0167-9457</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Child</term>
<term>Coupling</term>
<term>Development</term>
<term>Locomotion</term>
<term>Oculomotor coordination</term>
<term>Postural fitting</term>
<term>Posture</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Enfant</term>
<term>Développement</term>
<term>Ajustement postural</term>
<term>Coordination oculomotrice</term>
<term>Couplage</term>
<term>Posture</term>
<term>Locomotion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-9457</s0>
</fA01>
<fA02 i1="01">
<s0>HMSCDO</s0>
</fA02>
<fA03 i2="1">
<s0>Hum. mov. sci.</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Approaches to sensory-motor development in infants and children</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LEJEUNE (Laure)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDERSON (David I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CAMPOS (Joseph J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WITHERINGTON (David C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>UCHIYAMA (Ichiro)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BARBU-ROTH (Marianne)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PIEK (Jan P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GASSON (Natalie)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GARRY (Michael)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Human Development, University of California, Berkeley, Tolman Hall</s1>
<s2>Berkeley, CA 94720-1690</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue</s1>
<s2>San Francisco, CA 94132-4161</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Psychology, Logan Hall, University of New Mexico</s1>
<s2>Albuquerque, NM 87131-1161</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Psychology, Doshisha University</s1>
<s2>Kyoto 602-8580</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant</s1>
<s2>92774 Boulogne Billancourt</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>School of Psychology, Curtin University of Technology</s1>
<s2>Perth 6845</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>School of Psychology, University of Tasmania</s1>
<s2>Hobart, Tasmania</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Curtin University of Technology. Research Centre for Applied Psychology</s1>
<s2>Perth</s2>
<s3>AUS</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>4-17</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19996</s2>
<s5>354000133170040010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0151847</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Human movement science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A26J03A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Enfant</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Child</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Niño</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Développement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Development</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Desarrollo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ajustement postural</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Postural fitting</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ajuste postural</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Coordination oculomotrice</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Oculomotor coordination</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Coordinación oculomotora</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couplage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Coupling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Acoplamiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Posture</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Posture</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Postura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Locomotion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Locomotion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Locomoción</s0>
<s5>07</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Human</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
</fC07>
<fN21>
<s1>093</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Motor Control and Human Skill Conference</s1>
<s2>7</s2>
<s3>Fremantle, Western Australia AUS</s3>
<s4>2005-02-03</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 06-0151847 INIST</NO>
<ET>Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?</ET>
<AU>LEJEUNE (Laure); ANDERSON (David I.); CAMPOS (Joseph J.); WITHERINGTON (David C.); UCHIYAMA (Ichiro); BARBU-ROTH (Marianne); PIEK (Jan P.); GASSON (Natalie); GARRY (Michael)</AU>
<AF>Institute of Human Development, University of California, Berkeley, Tolman Hall/Berkeley, CA 94720-1690/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue/San Francisco, CA 94132-4161/Etats-Unis (2 aut.); Department of Psychology, Logan Hall, University of New Mexico/Albuquerque, NM 87131-1161/Etats-Unis (4 aut.); Department of Psychology, Doshisha University/Kyoto 602-8580/Japon (5 aut.); Laboratoire Cognition et Developpement CNRS, Institut de Psychologie, Université Paris 5, 71 avenue Edouard Vaillant/92774 Boulogne Billancourt/France (6 aut.); School of Psychology, Curtin University of Technology/Perth 6845/Australie (1 aut., 2 aut.); School of Psychology, University of Tasmania/Hobart, Tasmania/Australie (3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Human movement science; ISSN 0167-9457; Coden HMSCDO; Pays-Bas; Da. 2006; Vol. 25; No. 1; Pp. 4-17; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>Human infants show a peak in postural compensation to optic flow at approximately nine months of age. The current experiment tested whether the magnitude of visual-postural coupling in 9-month-olds increases when terrestrial optic flow is added to a moving room. A secondary objective was to explore whether locomotor experience plays any role in enhancing responsiveness to the additional terrestrial information. Ninety-one infants (experienced creepers, nascent creepers, and prelocomotors) were exposed to two conditions of optic flow: global optic flow (G) and global optic flow minus terrestrial optic flow (G- T). The additional terrestrial optic flow led to significantly higher visual-postural coupling. Consistent with previous findings, locomotor experience had no effect on responsiveness to the G - T condition, though there was weak evidence that the nascent creepers were more strongly influenced by the difference between flow conditions than the other infants. Unexpectedly, the prelocomotor females showed significantly lower visual-postural coupling than the prelocomotor males. These findings support the notion that the ground provides an important source of information for the control of posture and locomotion. The findings also suggest that locomotor experience most likely helps to functionalize smaller (partial), rather than larger (global), optic flow fields for postural control.</EA>
<CC>002A26J03A</CC>
<FD>Enfant; Développement; Ajustement postural; Coordination oculomotrice; Couplage; Posture; Locomotion</FD>
<FG>Homme</FG>
<ED>Child; Development; Postural fitting; Oculomotor coordination; Coupling; Posture; Locomotion</ED>
<EG>Human</EG>
<SD>Niño; Desarrollo; Ajuste postural; Coordinación oculomotora; Acoplamiento; Postura; Locomoción</SD>
<LO>INIST-19996.354000133170040010</LO>
<ID>06-0151847</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004512 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004512 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0151847
   |texte=   Responsiveness to terrestrial optic flow in infancy : Does locomotor experience play a role?
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024