Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

From point defects to plate tectonic faults

Identifieur interne : 004239 ( PascalFrancis/Corpus ); précédent : 004238; suivant : 004240

From point defects to plate tectonic faults

Auteurs : K. Regenauer-Lieb ; B. Hobbs ; D. A. Yuen ; A. Ord ; Y. Zhang ; H. B. Mulhaus ; G. Morra

Source :

RBID : Pascal:06-0388356

Descripteurs français

English descriptors

Abstract

Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1478-6435
A03   1    @0 Philos. mag. : (2003, Print)
A05       @2 86
A06       @2 21-22
A08 01  1  ENG  @1 From point defects to plate tectonic faults
A09 01  1  ENG  @1 Instabilities across the scales
A11 01  1    @1 REGENAUER-LIEB (K.)
A11 02  1    @1 HOBBS (B.)
A11 03  1    @1 YUEN (D. A.)
A11 04  1    @1 ORD (A.)
A11 05  1    @1 ZHANG (Y.)
A11 06  1    @1 MULHAUS (H. B.)
A11 07  1    @1 MORRA (G.)
A12 01  1    @1 MUHLHAUS (Hans-Bernd) @9 ed.
A12 02  1    @1 BUSSO (Esteban P.) @9 ed.
A12 03  1    @1 BENALLAL (Ahmed) @9 ed.
A12 04  1    @1 SLUYS (Lambertus J.) @9 ed.
A12 05  1    @1 SUIKER (Akke S. J.) @9 ed.
A14 01      @1 School of Earth and Geographical Sciences, The University of Western Australia @3 AUS @Z 1 aut.
A14 02      @1 Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics @2 55099 Mainz @3 DEU @Z 1 aut.
A14 03      @1 CSIRO Exploration and Mining Perth (ARRC), PO Box 1130 @2 Bentley WA 6102 @3 AUS @Z 2 aut. @Z 4 aut. @Z 5 aut.
A14 04      @1 Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis @2 Minnesota 55455 @3 USA @Z 3 aut.
A14 05      @1 ESSCC, The University of Queensland @2 St Lucia, QLD 4072 @3 AUS @Z 6 aut.
A14 06      @1 ETH Zürich, Institute of Geophysics @2 8093, Hönggerberg @3 CHE @Z 7 aut.
A15 01      @1 Earth Systems Science computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland @2 Brisbane, 4072 @3 AUS @Z 1 aut.
A15 02      @1 Centre des Matériaux, Ecole des Mines de Paris @3 FRA @Z 2 aut.
A15 03      @1 LMT-ENS de Cachan/CNRS/Université Paris 6 @3 FRA @Z 3 aut.
A15 04      @1 Faculty of Civil Engineering and Geosciences, Delft University of Technology @3 NLD @Z 4 aut.
A15 05      @1 Faculty of Aerospace Engineering, Delft University of Technology @3 NLD @Z 5 aut.
A20       @1 3373-3392
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 134A3 @5 354000142527050120
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 48 ref.
A47 01  1    @0 06-0388356
A60       @1 P
A61       @0 A
A64 01  1    @0 Philosophical magazine : (2003. Print)
A66 01      @0 GBR
C01 01    ENG  @0 Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.
C02 01  2    @0 001E01L
C02 02  3    @0 001B00E60
C02 03  3    @0 001B40G27T
C02 04  3    @0 001B40D05
C02 05  2    @0 225A
C03 01  2  FRE  @0 Tectonique plaque @5 06
C03 01  2  ENG  @0 plate tectonics @5 06
C03 01  2  SPA  @0 Tectónica placas @5 06
C03 02  2  FRE  @0 Convection @5 07
C03 02  2  ENG  @0 convection @5 07
C03 02  2  SPA  @0 Convección @5 07
C03 03  X  FRE  @0 Système hors équilibre @5 08
C03 03  X  ENG  @0 Non equilibrium system @5 08
C03 03  X  SPA  @0 Sistema fuera equilibrio @5 08
C03 04  X  FRE  @0 Croissance grain @5 09
C03 04  X  ENG  @0 Grain growth @5 09
C03 04  X  SPA  @0 Crecimiento grano @5 09
C03 05  X  FRE  @0 Diffusion thermique @5 10
C03 05  X  ENG  @0 Thermal diffusion @5 10
C03 05  X  SPA  @0 Difusión térmica @5 10
C03 06  2  FRE  @0 Transfert chaleur @5 11
C03 06  2  ENG  @0 heat transfer @5 11
C03 06  2  SPA  @0 Transferencia térmica @5 11
C03 07  2  FRE  @0 Défaut ponctuel @5 15
C03 07  2  ENG  @0 point defects @5 15
C03 08  2  FRE  @0 Géophysique @5 16
C03 08  2  ENG  @0 geophysics @5 16
C03 08  2  SPA  @0 Geofísica @5 16
C03 09  X  FRE  @0 Terre @5 17
C03 09  X  ENG  @0 Earth @5 17
C03 09  X  SPA  @0 Tierra @5 17
C03 10  X  FRE  @0 Mésoéchelle @5 18
C03 10  X  ENG  @0 Mesoscale @5 18
C03 10  X  SPA  @0 Mesoescala @5 18
C03 11  2  FRE  @0 Plaque @5 19
C03 11  2  ENG  @0 plates @5 19
C03 11  2  SPA  @0 Placa @5 19
C03 12  X  FRE  @0 Défaut réseau @5 20
C03 12  X  ENG  @0 Lattice defect @5 20
C03 12  X  SPA  @0 Defecto red @5 20
C03 13  X  FRE  @0 Matériau cristallin @5 21
C03 13  X  ENG  @0 Crystalline material @5 21
C03 13  X  SPA  @0 Material cristalino @5 21
C03 14  2  FRE  @0 Equation constitutive @5 23
C03 14  2  ENG  @0 constitutive equation @5 23
C03 15  X  FRE  @0 Modélisation @5 24
C03 15  X  ENG  @0 Modeling @5 24
C03 15  X  SPA  @0 Modelización @5 24
C03 16  X  FRE  @0 Méthode échelle multiple @5 25
C03 16  X  ENG  @0 Multiscale method @5 25
C03 16  X  SPA  @0 Método escala múltiple @5 25
C03 17  X  FRE  @0 Solution faible @5 26
C03 17  X  ENG  @0 Weak solution @5 26
C03 17  X  SPA  @0 Solución débil @5 26
C03 18  2  FRE  @0 Thermodynamique @5 27
C03 18  2  ENG  @0 thermodynamics @5 27
C03 18  2  SPA  @0 Termodinámica @5 27
C03 19  X  FRE  @0 Modèle phénoménologique @5 28
C03 19  X  ENG  @0 Phenomenological model @5 28
C03 19  X  SPA  @0 Modelo fenomenológico @5 28
C03 20  X  FRE  @0 Loi échelle @5 29
C03 20  X  ENG  @0 Scaling law @5 29
C03 20  X  SPA  @0 Ley escala @5 29
C03 21  X  FRE  @0 Autocohérence @5 30
C03 21  X  ENG  @0 Self consistency @5 30
C03 21  X  SPA  @0 Autocoherencia @5 30
C03 22  X  FRE  @0 Equation réaction diffusion @5 31
C03 22  X  ENG  @0 Reaction diffusion equation @5 31
C03 22  X  SPA  @0 Ecuación reacción difusión @5 31
C03 23  2  FRE  @0 Mobilité @5 32
C03 23  2  ENG  @0 mobility @5 32
C03 23  2  SPA  @0 Movilidad @5 32
N21       @1 261
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0388356 INIST
ET : From point defects to plate tectonic faults
AU : REGENAUER-LIEB (K.); HOBBS (B.); YUEN (D. A.); ORD (A.); ZHANG (Y.); MULHAUS (H. B.); MORRA (G.); MUHLHAUS (Hans-Bernd); BUSSO (Esteban P.); BENALLAL (Ahmed); SLUYS (Lambertus J.); SUIKER (Akke S. J.)
AF : School of Earth and Geographical Sciences, The University of Western Australia/Australie (1 aut.); Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics/55099 Mainz/Allemagne (1 aut.); CSIRO Exploration and Mining Perth (ARRC), PO Box 1130/Bentley WA 6102/Australie (2 aut., 4 aut., 5 aut.); Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis/Minnesota 55455/Etats-Unis (3 aut.); ESSCC, The University of Queensland/St Lucia, QLD 4072/Australie (6 aut.); ETH Zürich, Institute of Geophysics/8093, Hönggerberg/Suisse (7 aut.); Earth Systems Science computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland/Brisbane, 4072/Australie (1 aut.); Centre des Matériaux, Ecole des Mines de Paris/France (2 aut.); LMT-ENS de Cachan/CNRS/Université Paris 6/France (3 aut.); Faculty of Civil Engineering and Geosciences, Delft University of Technology/Pays-Bas (4 aut.); Faculty of Aerospace Engineering, Delft University of Technology/Pays-Bas (5 aut.)
DT : Publication en série; Niveau analytique
SO : Philosophical magazine : (2003. Print); ISSN 1478-6435; Royaume-Uni; Da. 2006; Vol. 86; No. 21-22; Pp. 3373-3392; Bibl. 48 ref.
LA : Anglais
EA : Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.
CC : 001E01L; 001B00E60; 001B40G27T; 001B40D05; 225A
FD : Tectonique plaque; Convection; Système hors équilibre; Croissance grain; Diffusion thermique; Transfert chaleur; Défaut ponctuel; Géophysique; Terre; Mésoéchelle; Plaque; Défaut réseau; Matériau cristallin; Equation constitutive; Modélisation; Méthode échelle multiple; Solution faible; Thermodynamique; Modèle phénoménologique; Loi échelle; Autocohérence; Equation réaction diffusion; Mobilité
ED : plate tectonics; convection; Non equilibrium system; Grain growth; Thermal diffusion; heat transfer; point defects; geophysics; Earth; Mesoscale; plates; Lattice defect; Crystalline material; constitutive equation; Modeling; Multiscale method; Weak solution; thermodynamics; Phenomenological model; Scaling law; Self consistency; Reaction diffusion equation; mobility
SD : Tectónica placas; Convección; Sistema fuera equilibrio; Crecimiento grano; Difusión térmica; Transferencia térmica; Geofísica; Tierra; Mesoescala; Placa; Defecto red; Material cristalino; Modelización; Método escala múltiple; Solución débil; Termodinámica; Modelo fenomenológico; Ley escala; Autocoherencia; Ecuación reacción difusión; Movilidad
LO : INIST-134A3.354000142527050120
ID : 06-0388356

Links to Exploration step

Pascal:06-0388356

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">From point defects to plate tectonic faults</title>
<author>
<name sortKey="Regenauer Lieb, K" sort="Regenauer Lieb, K" uniqKey="Regenauer Lieb K" first="K." last="Regenauer-Lieb">K. Regenauer-Lieb</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Geographical Sciences, The University of Western Australia</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics</s1>
<s2>55099 Mainz</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hobbs, B" sort="Hobbs, B" uniqKey="Hobbs B" first="B." last="Hobbs">B. Hobbs</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yuen, D A" sort="Yuen, D A" uniqKey="Yuen D" first="D. A." last="Yuen">D. A. Yuen</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis</s1>
<s2>Minnesota 55455</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ord, A" sort="Ord, A" uniqKey="Ord A" first="A." last="Ord">A. Ord</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Y" sort="Zhang, Y" uniqKey="Zhang Y" first="Y." last="Zhang">Y. Zhang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mulhaus, H B" sort="Mulhaus, H B" uniqKey="Mulhaus H" first="H. B." last="Mulhaus">H. B. Mulhaus</name>
<affiliation>
<inist:fA14 i1="05">
<s1>ESSCC, The University of Queensland</s1>
<s2>St Lucia, QLD 4072</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morra, G" sort="Morra, G" uniqKey="Morra G" first="G." last="Morra">G. Morra</name>
<affiliation>
<inist:fA14 i1="06">
<s1>ETH Zürich, Institute of Geophysics</s1>
<s2>8093, Hönggerberg</s2>
<s3>CHE</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0388356</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0388356 INIST</idno>
<idno type="RBID">Pascal:06-0388356</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">From point defects to plate tectonic faults</title>
<author>
<name sortKey="Regenauer Lieb, K" sort="Regenauer Lieb, K" uniqKey="Regenauer Lieb K" first="K." last="Regenauer-Lieb">K. Regenauer-Lieb</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Geographical Sciences, The University of Western Australia</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics</s1>
<s2>55099 Mainz</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hobbs, B" sort="Hobbs, B" uniqKey="Hobbs B" first="B." last="Hobbs">B. Hobbs</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yuen, D A" sort="Yuen, D A" uniqKey="Yuen D" first="D. A." last="Yuen">D. A. Yuen</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis</s1>
<s2>Minnesota 55455</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ord, A" sort="Ord, A" uniqKey="Ord A" first="A." last="Ord">A. Ord</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Y" sort="Zhang, Y" uniqKey="Zhang Y" first="Y." last="Zhang">Y. Zhang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mulhaus, H B" sort="Mulhaus, H B" uniqKey="Mulhaus H" first="H. B." last="Mulhaus">H. B. Mulhaus</name>
<affiliation>
<inist:fA14 i1="05">
<s1>ESSCC, The University of Queensland</s1>
<s2>St Lucia, QLD 4072</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Morra, G" sort="Morra, G" uniqKey="Morra G" first="G." last="Morra">G. Morra</name>
<affiliation>
<inist:fA14 i1="06">
<s1>ETH Zürich, Institute of Geophysics</s1>
<s2>8093, Hönggerberg</s2>
<s3>CHE</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystalline material</term>
<term>Earth</term>
<term>Grain growth</term>
<term>Lattice defect</term>
<term>Mesoscale</term>
<term>Modeling</term>
<term>Multiscale method</term>
<term>Non equilibrium system</term>
<term>Phenomenological model</term>
<term>Reaction diffusion equation</term>
<term>Scaling law</term>
<term>Self consistency</term>
<term>Thermal diffusion</term>
<term>Weak solution</term>
<term>constitutive equation</term>
<term>convection</term>
<term>geophysics</term>
<term>heat transfer</term>
<term>mobility</term>
<term>plate tectonics</term>
<term>plates</term>
<term>point defects</term>
<term>thermodynamics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Tectonique plaque</term>
<term>Convection</term>
<term>Système hors équilibre</term>
<term>Croissance grain</term>
<term>Diffusion thermique</term>
<term>Transfert chaleur</term>
<term>Défaut ponctuel</term>
<term>Géophysique</term>
<term>Terre</term>
<term>Mésoéchelle</term>
<term>Plaque</term>
<term>Défaut réseau</term>
<term>Matériau cristallin</term>
<term>Equation constitutive</term>
<term>Modélisation</term>
<term>Méthode échelle multiple</term>
<term>Solution faible</term>
<term>Thermodynamique</term>
<term>Modèle phénoménologique</term>
<term>Loi échelle</term>
<term>Autocohérence</term>
<term>Equation réaction diffusion</term>
<term>Mobilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>21-22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>From point defects to plate tectonic faults</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Instabilities across the scales</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>REGENAUER-LIEB (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOBBS (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YUEN (D. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ORD (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHANG (Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MULHAUS (H. B.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MORRA (G.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MUHLHAUS (Hans-Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BUSSO (Esteban P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BENALLAL (Ahmed)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SLUYS (Lambertus J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SUIKER (Akke S. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Earth and Geographical Sciences, The University of Western Australia</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics</s1>
<s2>55099 Mainz</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CSIRO Exploration and Mining Perth (ARRC), PO Box 1130</s1>
<s2>Bentley WA 6102</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis</s1>
<s2>Minnesota 55455</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>ESSCC, The University of Queensland</s1>
<s2>St Lucia, QLD 4072</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>ETH Zürich, Institute of Geophysics</s1>
<s2>8093, Hönggerberg</s2>
<s3>CHE</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Earth Systems Science computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland</s1>
<s2>Brisbane, 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Centre des Matériaux, Ecole des Mines de Paris</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>LMT-ENS de Cachan/CNRS/Université Paris 6</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Faculty of Civil Engineering and Geosciences, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Faculty of Aerospace Engineering, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>3373-3392</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000142527050120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0388356</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00E60</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40G27T</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40D05</s0>
</fC02>
<fC02 i1="05" i2="2">
<s0>225A</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Tectonique plaque</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>plate tectonics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Tectónica placas</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Convection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>convection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Convección</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système hors équilibre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Non equilibrium system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema fuera equilibrio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Croissance grain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Grain growth</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Crecimiento grano</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffusion thermique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thermal diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difusión térmica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Transfert chaleur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>heat transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Transferencia térmica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Défaut ponctuel</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>point defects</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Géophysique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>geophysics</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Geofísica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Terre</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Earth</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tierra</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mésoéchelle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mesoscale</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mesoescala</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Plaque</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>plates</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Placa</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Défaut réseau</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Lattice defect</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Defecto red</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Equation constitutive</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>constitutive equation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Méthode échelle multiple</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Multiscale method</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Método escala múltiple</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Solution faible</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Weak solution</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Solución débil</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Thermodynamique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>thermodynamics</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Termodinámica</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Modèle phénoménologique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Phenomenological model</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Modelo fenomenológico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Loi échelle</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Scaling law</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Ley escala</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Autocohérence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Self consistency</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Autocoherencia</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Equation réaction diffusion</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Reaction diffusion equation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Ecuación reacción difusión</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Mobilité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>mobility</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Movilidad</s0>
<s5>32</s5>
</fC03>
<fN21>
<s1>261</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0388356 INIST</NO>
<ET>From point defects to plate tectonic faults</ET>
<AU>REGENAUER-LIEB (K.); HOBBS (B.); YUEN (D. A.); ORD (A.); ZHANG (Y.); MULHAUS (H. B.); MORRA (G.); MUHLHAUS (Hans-Bernd); BUSSO (Esteban P.); BENALLAL (Ahmed); SLUYS (Lambertus J.); SUIKER (Akke S. J.)</AU>
<AF>School of Earth and Geographical Sciences, The University of Western Australia/Australie (1 aut.); Johannes Gutenberg-Universität Mainz, Geophysics & Geodynamics/55099 Mainz/Allemagne (1 aut.); CSIRO Exploration and Mining Perth (ARRC), PO Box 1130/Bentley WA 6102/Australie (2 aut., 4 aut., 5 aut.); Department of Geology and Geophysics and Supercomputer Institute, University of Minnesota Minneapolis/Minnesota 55455/Etats-Unis (3 aut.); ESSCC, The University of Queensland/St Lucia, QLD 4072/Australie (6 aut.); ETH Zürich, Institute of Geophysics/8093, Hönggerberg/Suisse (7 aut.); Earth Systems Science computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland/Brisbane, 4072/Australie (1 aut.); Centre des Matériaux, Ecole des Mines de Paris/France (2 aut.); LMT-ENS de Cachan/CNRS/Université Paris 6/France (3 aut.); Faculty of Civil Engineering and Geosciences, Delft University of Technology/Pays-Bas (4 aut.); Faculty of Aerospace Engineering, Delft University of Technology/Pays-Bas (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Philosophical magazine : (2003. Print); ISSN 1478-6435; Royaume-Uni; Da. 2006; Vol. 86; No. 21-22; Pp. 3373-3392; Bibl. 48 ref.</SO>
<LA>Anglais</LA>
<EA>Understanding and. explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed "hydrolytic weakening". At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.</EA>
<CC>001E01L; 001B00E60; 001B40G27T; 001B40D05; 225A</CC>
<FD>Tectonique plaque; Convection; Système hors équilibre; Croissance grain; Diffusion thermique; Transfert chaleur; Défaut ponctuel; Géophysique; Terre; Mésoéchelle; Plaque; Défaut réseau; Matériau cristallin; Equation constitutive; Modélisation; Méthode échelle multiple; Solution faible; Thermodynamique; Modèle phénoménologique; Loi échelle; Autocohérence; Equation réaction diffusion; Mobilité</FD>
<ED>plate tectonics; convection; Non equilibrium system; Grain growth; Thermal diffusion; heat transfer; point defects; geophysics; Earth; Mesoscale; plates; Lattice defect; Crystalline material; constitutive equation; Modeling; Multiscale method; Weak solution; thermodynamics; Phenomenological model; Scaling law; Self consistency; Reaction diffusion equation; mobility</ED>
<SD>Tectónica placas; Convección; Sistema fuera equilibrio; Crecimiento grano; Difusión térmica; Transferencia térmica; Geofísica; Tierra; Mesoescala; Placa; Defecto red; Material cristalino; Modelización; Método escala múltiple; Solución débil; Termodinámica; Modelo fenomenológico; Ley escala; Autocoherencia; Ecuación reacción difusión; Movilidad</SD>
<LO>INIST-134A3.354000142527050120</LO>
<ID>06-0388356</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004239 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004239 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0388356
   |texte=   From point defects to plate tectonic faults
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024