Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coupling between Ge-nanocrystals and defects in SiO2

Identifieur interne : 003F74 ( PascalFrancis/Corpus ); précédent : 003F73; suivant : 003F75

Coupling between Ge-nanocrystals and defects in SiO2

Auteurs : J. Skov Jensen ; G. Franzo ; T. P. Leervad Petersen ; R. Pereira ; J. Chevallier ; M. Christian Petersen ; B. Bech Nielsen ; A. Nylandsted Larsen

Source :

RBID : Pascal:07-0004301

Descripteurs français

English descriptors

Abstract

Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-2313
A02 01      @0 JLUMA8
A03   1    @0 J. lumin.
A05       @2 121
A06       @2 2
A08 01  1  ENG  @1 Coupling between Ge-nanocrystals and defects in SiO2
A09 01  1  ENG  @1 Proceedings of the E-MRS 2006 Symposium D on Silicon-Based Photonics held in Nice, France, May 29-June 2, 2006
A11 01  1    @1 SKOV JENSEN (J.)
A11 02  1    @1 FRANZO (G.)
A11 03  1    @1 LEERVAD PETERSEN (T. P.)
A11 04  1    @1 PEREIRA (R.)
A11 05  1    @1 CHEVALLIER (J.)
A11 06  1    @1 PETERSEN (M. Christian)
A11 07  1    @1 BECH NIELSEN (B.)
A11 08  1    @1 NYLANDSTED LARSEN (A.)
A12 01  1    @1 LINNROS (Jan) @9 ed.
A12 02  1    @1 GREGORKIEWICZ (Tom) @9 ed.
A12 03  1    @1 ELLIMAN (Robert) @9 ed.
A12 04  1    @1 KIMERLING (Lionel) @9 ed.
A14 01      @1 Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade @2 8000 Aarhus @3 DNK @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut.
A14 02      @1 CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64 @2 95123 Catania @3 ITA @Z 2 aut.
A15 01      @1 Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229 @2 16440 Kista-Stockholm @3 SWE @Z 1 aut.
A15 02      @1 Van der Waals - Zeeman Institute, university of Amsterdam, Valckenierstraat 65 @2 1018 XE Amsterdam @3 NLD @Z 2 aut.
A15 03      @1 Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, The Australian National University @2 Canberra ACT 0200 @3 AUS @Z 3 aut.
A15 04      @1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue @2 Cambridge, MA 02139-4307 @3 USA @Z 4 aut.
A18 01  1    @1 European Materials Research Society (EMRS) @2 67037 Strasbourg @3 FRA @9 org-cong.
A20       @1 409-412
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 14666 @5 354000143060630510
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 12 ref.
A47 01  1    @0 07-0004301
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of luminescence
A66 01      @0 NLD
C01 01    ENG  @0 Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.
C02 01  3    @0 001B70H66N
C03 01  3  FRE  @0 Défaut @5 02
C03 01  3  ENG  @0 Defects @5 02
C03 02  3  FRE  @0 Photoluminescence @5 03
C03 02  3  ENG  @0 Photoluminescence @5 03
C03 03  3  FRE  @0 Pulvérisation cathodique @5 04
C03 03  3  ENG  @0 Cathode sputtering @5 04
C03 04  X  FRE  @0 Codopage @5 05
C03 04  X  ENG  @0 Codoping @5 05
C03 04  X  SPA  @0 Codrogado @5 05
C03 05  3  FRE  @0 Addition germanium @5 06
C03 05  3  ENG  @0 Germanium additions @5 06
C03 06  3  FRE  @0 Traitement thermique @5 07
C03 06  3  ENG  @0 Heat treatments @5 07
C03 07  3  FRE  @0 Particule alpha @5 08
C03 07  3  ENG  @0 Alpha particles @5 08
C03 08  3  FRE  @0 Spectre résolution temporelle @5 09
C03 08  3  ENG  @0 Time resolved spectra @5 09
C03 09  3  FRE  @0 Effet rayonnement @5 10
C03 09  3  ENG  @0 Radiation effects @5 10
C03 10  3  FRE  @0 Passivation @5 11
C03 10  3  ENG  @0 Passivation @5 11
C03 11  3  FRE  @0 Transfert énergie @5 12
C03 11  3  ENG  @0 Energy transfer @5 12
C03 12  3  FRE  @0 Exciton @5 14
C03 12  3  ENG  @0 Excitons @5 14
C03 13  X  FRE  @0 Nanocristal @5 16
C03 13  X  ENG  @0 Nanocrystal @5 16
C03 13  X  SPA  @0 Nanocristal @5 16
C03 14  3  FRE  @0 Silicium oxyde @2 NK @5 17
C03 14  3  ENG  @0 Silicon oxides @2 NK @5 17
C03 15  3  FRE  @0 SiO2 @4 INC @5 52
C03 16  3  FRE  @0 7866N @4 INC @5 60
N21       @1 008
pR  
A30 01  1  ENG  @1 E-MRS 2006 Symposium D on Silicon-based photonics @3 Nice FRA @4 2006-05-29

Format Inist (serveur)

NO : PASCAL 07-0004301 INIST
ET : Coupling between Ge-nanocrystals and defects in SiO2
AU : SKOV JENSEN (J.); FRANZO (G.); LEERVAD PETERSEN (T. P.); PEREIRA (R.); CHEVALLIER (J.); PETERSEN (M. Christian); BECH NIELSEN (B.); NYLANDSTED LARSEN (A.); LINNROS (Jan); GREGORKIEWICZ (Tom); ELLIMAN (Robert); KIMERLING (Lionel)
AF : Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade/8000 Aarhus/Danemark (1 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut., 8 aut.); CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64/95123 Catania/Italie (2 aut.); Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229/16440 Kista-Stockholm/Suède (1 aut.); Van der Waals - Zeeman Institute, university of Amsterdam, Valckenierstraat 65/1018 XE Amsterdam/Pays-Bas (2 aut.); Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, The Australian National University/Canberra ACT 0200/Australie (3 aut.); Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue/Cambridge, MA 02139-4307/Etats-Unis (4 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2006; Vol. 121; No. 2; Pp. 409-412; Bibl. 12 ref.
LA : Anglais
EA : Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.
CC : 001B70H66N
FD : Défaut; Photoluminescence; Pulvérisation cathodique; Codopage; Addition germanium; Traitement thermique; Particule alpha; Spectre résolution temporelle; Effet rayonnement; Passivation; Transfert énergie; Exciton; Nanocristal; Silicium oxyde; SiO2; 7866N
ED : Defects; Photoluminescence; Cathode sputtering; Codoping; Germanium additions; Heat treatments; Alpha particles; Time resolved spectra; Radiation effects; Passivation; Energy transfer; Excitons; Nanocrystal; Silicon oxides
SD : Codrogado; Nanocristal
LO : INIST-14666.354000143060630510
ID : 07-0004301

Links to Exploration step

Pascal:07-0004301

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Coupling between Ge-nanocrystals and defects in SiO
<sub>2</sub>
</title>
<author>
<name sortKey="Skov Jensen, J" sort="Skov Jensen, J" uniqKey="Skov Jensen J" first="J." last="Skov Jensen">J. Skov Jensen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Franzo, G" sort="Franzo, G" uniqKey="Franzo G" first="G." last="Franzo">G. Franzo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leervad Petersen, T P" sort="Leervad Petersen, T P" uniqKey="Leervad Petersen T" first="T. P." last="Leervad Petersen">T. P. Leervad Petersen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pereira, R" sort="Pereira, R" uniqKey="Pereira R" first="R." last="Pereira">R. Pereira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, J" sort="Chevallier, J" uniqKey="Chevallier J" first="J." last="Chevallier">J. Chevallier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petersen, M Christian" sort="Petersen, M Christian" uniqKey="Petersen M" first="M. Christian" last="Petersen">M. Christian Petersen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bech Nielsen, B" sort="Bech Nielsen, B" uniqKey="Bech Nielsen B" first="B." last="Bech Nielsen">B. Bech Nielsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nylandsted Larsen, A" sort="Nylandsted Larsen, A" uniqKey="Nylandsted Larsen A" first="A." last="Nylandsted Larsen">A. Nylandsted Larsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0004301</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0004301 INIST</idno>
<idno type="RBID">Pascal:07-0004301</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003F74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Coupling between Ge-nanocrystals and defects in SiO
<sub>2</sub>
</title>
<author>
<name sortKey="Skov Jensen, J" sort="Skov Jensen, J" uniqKey="Skov Jensen J" first="J." last="Skov Jensen">J. Skov Jensen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Franzo, G" sort="Franzo, G" uniqKey="Franzo G" first="G." last="Franzo">G. Franzo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leervad Petersen, T P" sort="Leervad Petersen, T P" uniqKey="Leervad Petersen T" first="T. P." last="Leervad Petersen">T. P. Leervad Petersen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pereira, R" sort="Pereira, R" uniqKey="Pereira R" first="R." last="Pereira">R. Pereira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, J" sort="Chevallier, J" uniqKey="Chevallier J" first="J." last="Chevallier">J. Chevallier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petersen, M Christian" sort="Petersen, M Christian" uniqKey="Petersen M" first="M. Christian" last="Petersen">M. Christian Petersen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bech Nielsen, B" sort="Bech Nielsen, B" uniqKey="Bech Nielsen B" first="B." last="Bech Nielsen">B. Bech Nielsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nylandsted Larsen, A" sort="Nylandsted Larsen, A" uniqKey="Nylandsted Larsen A" first="A." last="Nylandsted Larsen">A. Nylandsted Larsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alpha particles</term>
<term>Cathode sputtering</term>
<term>Codoping</term>
<term>Defects</term>
<term>Energy transfer</term>
<term>Excitons</term>
<term>Germanium additions</term>
<term>Heat treatments</term>
<term>Nanocrystal</term>
<term>Passivation</term>
<term>Photoluminescence</term>
<term>Radiation effects</term>
<term>Silicon oxides</term>
<term>Time resolved spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Défaut</term>
<term>Photoluminescence</term>
<term>Pulvérisation cathodique</term>
<term>Codopage</term>
<term>Addition germanium</term>
<term>Traitement thermique</term>
<term>Particule alpha</term>
<term>Spectre résolution temporelle</term>
<term>Effet rayonnement</term>
<term>Passivation</term>
<term>Transfert énergie</term>
<term>Exciton</term>
<term>Nanocristal</term>
<term>Silicium oxyde</term>
<term>SiO2</term>
<term>7866N</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO
<sub>2</sub>
films co-doped with Ge is reported. The PL signal is observed in pure SiO
<sub>2</sub>
, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO
<sub>2</sub>
films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO
<sub>2</sub>
layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO
<sub>2</sub>
(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO
<sub>2</sub>
defect.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>121</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Coupling between Ge-nanocrystals and defects in SiO
<sub>2</sub>
</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the E-MRS 2006 Symposium D on Silicon-Based Photonics held in Nice, France, May 29-June 2, 2006</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SKOV JENSEN (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FRANZO (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEERVAD PETERSEN (T. P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PEREIRA (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHEVALLIER (J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PETERSEN (M. Christian)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BECH NIELSEN (B.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>NYLANDSTED LARSEN (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LINNROS (Jan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GREGORKIEWICZ (Tom)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ELLIMAN (Robert)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>KIMERLING (Lionel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade</s1>
<s2>8000 Aarhus</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229</s1>
<s2>16440 Kista-Stockholm</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Van der Waals - Zeeman Institute, university of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue</s1>
<s2>Cambridge, MA 02139-4307</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (EMRS)</s1>
<s2>67037 Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>409-412</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000143060630510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0004301</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO
<sub>2</sub>
films co-doped with Ge is reported. The PL signal is observed in pure SiO
<sub>2</sub>
, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO
<sub>2</sub>
films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO
<sub>2</sub>
layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO
<sub>2</sub>
(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO
<sub>2</sub>
defect.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Défaut</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Defects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition germanium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Germanium additions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Particule alpha</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Alpha particles</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Passivation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Passivation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Silicium oxyde</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7866N</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>008</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS 2006 Symposium D on Silicon-based photonics</s1>
<s3>Nice FRA</s3>
<s4>2006-05-29</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 07-0004301 INIST</NO>
<ET>Coupling between Ge-nanocrystals and defects in SiO
<sub>2</sub>
</ET>
<AU>SKOV JENSEN (J.); FRANZO (G.); LEERVAD PETERSEN (T. P.); PEREIRA (R.); CHEVALLIER (J.); PETERSEN (M. Christian); BECH NIELSEN (B.); NYLANDSTED LARSEN (A.); LINNROS (Jan); GREGORKIEWICZ (Tom); ELLIMAN (Robert); KIMERLING (Lionel)</AU>
<AF>Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade/8000 Aarhus/Danemark (1 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut., 8 aut.); CNR-INFM, CRS MATIS, Università di Catania, Via Santa Sofia 64/95123 Catania/Italie (2 aut.); Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229/16440 Kista-Stockholm/Suède (1 aut.); Van der Waals - Zeeman Institute, university of Amsterdam, Valckenierstraat 65/1018 XE Amsterdam/Pays-Bas (2 aut.); Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, The Australian National University/Canberra ACT 0200/Australie (3 aut.); Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue/Cambridge, MA 02139-4307/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2006; Vol. 121; No. 2; Pp. 409-412; Bibl. 12 ref.</SO>
<LA>Anglais</LA>
<EA>Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO
<sub>2</sub>
films co-doped with Ge is reported. The PL signal is observed in pure SiO
<sub>2</sub>
, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO
<sub>2</sub>
films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5nm are present in large concentration in SiO
<sub>2</sub>
layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO
<sub>2</sub>
(probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO
<sub>2</sub>
defect.</EA>
<CC>001B70H66N</CC>
<FD>Défaut; Photoluminescence; Pulvérisation cathodique; Codopage; Addition germanium; Traitement thermique; Particule alpha; Spectre résolution temporelle; Effet rayonnement; Passivation; Transfert énergie; Exciton; Nanocristal; Silicium oxyde; SiO2; 7866N</FD>
<ED>Defects; Photoluminescence; Cathode sputtering; Codoping; Germanium additions; Heat treatments; Alpha particles; Time resolved spectra; Radiation effects; Passivation; Energy transfer; Excitons; Nanocrystal; Silicon oxides</ED>
<SD>Codrogado; Nanocristal</SD>
<LO>INIST-14666.354000143060630510</LO>
<ID>07-0004301</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003F74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0004301
   |texte=   Coupling between Ge-nanocrystals and defects in SiO2
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024