Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi

Identifieur interne : 003D20 ( PascalFrancis/Corpus ); précédent : 003D19; suivant : 003D21

Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi

Auteurs : Jean-Francois Rontani ; Ian Jameson ; Stéphane Christodoulou ; John K. Volkman

Source :

RBID : Pascal:07-0171394

Descripteurs français

English descriptors

Abstract

Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO2 showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C22:6) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH4-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ5-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ5 double bond of epi-brassicasterol and minor amounts of Δ4-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO2 likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO2, but not when grown with 0.5% CO2. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0031-9422
A03   1    @0 Phytochemistry
A05       @2 68
A06       @2 6
A08 01  1  ENG  @1 Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi
A11 01  1    @1 RONTANI (Jean-Francois)
A11 02  1    @1 JAMESON (Ian)
A11 03  1    @1 CHRISTODOULOU (Stéphane)
A11 04  1    @1 VOLKMAN (John K.)
A14 01      @1 Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901 @2 13288 Marseille @3 FRA @Z 1 aut. @Z 3 aut.
A14 02      @1 CSIRO Marine and Atmospheric Research, GPO Box 1538 @2 Hobart, Tasmania 7001 @3 AUS @Z 2 aut. @Z 4 aut.
A20       @1 913-924
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 9408 @5 354000143562740200
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 07-0171394
A60       @1 P
A61       @0 A
A64 01  1    @0 Phytochemistry
A66 01      @0 NLD
C01 01    ENG  @0 Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO2 showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C22:6) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH4-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ5-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ5 double bond of epi-brassicasterol and minor amounts of Δ4-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO2 likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO2, but not when grown with 0.5% CO2. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.
C02 01  X    @0 002A10D
C02 02  X    @0 002A10E01
C03 01  X  FRE  @0 Radical libre @2 FX @5 01
C03 01  X  ENG  @0 Free radical @2 FX @5 01
C03 01  X  SPA  @0 Radical libre @2 FX @5 01
C03 02  X  FRE  @0 Oxydation @5 02
C03 02  X  ENG  @0 Oxidation @5 02
C03 02  X  SPA  @0 Oxidación @5 02
C03 03  X  FRE  @0 Autooxydation @5 03
C03 03  X  ENG  @0 Autoxidation @5 03
C03 03  X  SPA  @0 Autooxidación @5 03
C03 04  X  FRE  @0 Lipide @5 04
C03 04  X  ENG  @0 Lipids @5 04
C03 04  X  SPA  @0 Lípido @5 04
C03 05  X  FRE  @0 Souche @5 05
C03 05  X  ENG  @0 Strain @5 05
C03 05  X  SPA  @0 Cepa @5 05
C03 06  X  FRE  @0 Croissance @5 06
C03 06  X  ENG  @0 Growth @5 06
C03 06  X  SPA  @0 Crecimiento @5 06
C03 07  X  FRE  @0 Acide gras @5 07
C03 07  X  ENG  @0 Fatty acids @5 07
C03 07  X  SPA  @0 Acido graso @5 07
C03 08  X  FRE  @0 Acide gras polyinsaturé @5 08
C03 08  X  ENG  @0 Polyunsaturated fatty acid @5 08
C03 08  X  SPA  @0 Acido graso poliinsaturado @5 08
C03 09  X  FRE  @0 Réduction @5 09
C03 09  X  ENG  @0 Reduction @5 09
C03 09  X  SPA  @0 Reducción @5 09
C03 10  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 15
C03 10  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 10  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 11  X  FRE  @0 Oléique acide @2 NK @5 16
C03 11  X  ENG  @0 Oleic acid @2 NK @5 16
C03 11  X  SPA  @0 Oleico ácido @2 NK @5 16
C03 12  X  FRE  @0 Photooxydation @5 33
C03 12  X  ENG  @0 Photooxidation @5 33
C03 12  X  SPA  @0 Fotooxidación @5 33
C03 13  X  FRE  @0 Produit dégradation @5 34
C03 13  X  ENG  @0 Degradation product @5 34
C03 13  X  SPA  @0 Producto degradación @5 34
C03 14  X  FRE  @0 Diol @5 35
C03 14  X  ENG  @0 Diol @5 35
C03 14  X  SPA  @0 Diol @5 35
C03 15  X  FRE  @0 Chlorophylle @5 36
C03 15  X  ENG  @0 Chlorophyll @5 36
C03 15  X  SPA  @0 Clorofila @5 36
C03 16  X  FRE  @0 Stéroïde @5 37
C03 16  X  ENG  @0 Steroid @5 37
C03 16  X  SPA  @0 Esteroide @5 37
C03 17  X  FRE  @0 Chaîne longue @5 38
C03 17  X  ENG  @0 Long chain @5 38
C03 17  X  SPA  @0 Cadena larga @5 38
C03 18  X  FRE  @0 EC 6.3.3.1 @4 CD @5 96
C03 18  X  ENG  @0 EC 6.3.3.1 @4 CD @5 96
N21       @1 121
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0171394 INIST
ET : Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi
AU : RONTANI (Jean-Francois); JAMESON (Ian); CHRISTODOULOU (Stéphane); VOLKMAN (John K.)
AF : Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901/13288 Marseille/France (1 aut., 3 aut.); CSIRO Marine and Atmospheric Research, GPO Box 1538/Hobart, Tasmania 7001/Australie (2 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Phytochemistry; ISSN 0031-9422; Pays-Bas; Da. 2007; Vol. 68; No. 6; Pp. 913-924; Bibl. 1 p.1/4
LA : Anglais
EA : Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO2 showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C22:6) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH4-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ5-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ5 double bond of epi-brassicasterol and minor amounts of Δ4-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO2 likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO2, but not when grown with 0.5% CO2. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.
CC : 002A10D; 002A10E01
FD : Radical libre; Oxydation; Autooxydation; Lipide; Souche; Croissance; Acide gras; Acide gras polyinsaturé; Réduction; Carbone dioxyde; Oléique acide; Photooxydation; Produit dégradation; Diol; Chlorophylle; Stéroïde; Chaîne longue; EC 6.3.3.1
ED : Free radical; Oxidation; Autoxidation; Lipids; Strain; Growth; Fatty acids; Polyunsaturated fatty acid; Reduction; Carbon dioxide; Oleic acid; Photooxidation; Degradation product; Diol; Chlorophyll; Steroid; Long chain; EC 6.3.3.1
SD : Radical libre; Oxidación; Autooxidación; Lípido; Cepa; Crecimiento; Acido graso; Acido graso poliinsaturado; Reducción; Carbono dióxido; Oleico ácido; Fotooxidación; Producto degradación; Diol; Clorofila; Esteroide; Cadena larga
LO : INIST-9408.354000143562740200
ID : 07-0171394

Links to Exploration step

Pascal:07-0171394

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi</title>
<author>
<name sortKey="Rontani, Jean Francois" sort="Rontani, Jean Francois" uniqKey="Rontani J" first="Jean-Francois" last="Rontani">Jean-Francois Rontani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jameson, Ian" sort="Jameson, Ian" uniqKey="Jameson I" first="Ian" last="Jameson">Ian Jameson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research, GPO Box 1538</s1>
<s2>Hobart, Tasmania 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Christodoulou, Stephane" sort="Christodoulou, Stephane" uniqKey="Christodoulou S" first="Stéphane" last="Christodoulou">Stéphane Christodoulou</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Volkman, John K" sort="Volkman, John K" uniqKey="Volkman J" first="John K." last="Volkman">John K. Volkman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research, GPO Box 1538</s1>
<s2>Hobart, Tasmania 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0171394</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0171394 INIST</idno>
<idno type="RBID">Pascal:07-0171394</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003D20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi</title>
<author>
<name sortKey="Rontani, Jean Francois" sort="Rontani, Jean Francois" uniqKey="Rontani J" first="Jean-Francois" last="Rontani">Jean-Francois Rontani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jameson, Ian" sort="Jameson, Ian" uniqKey="Jameson I" first="Ian" last="Jameson">Ian Jameson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research, GPO Box 1538</s1>
<s2>Hobart, Tasmania 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Christodoulou, Stephane" sort="Christodoulou, Stephane" uniqKey="Christodoulou S" first="Stéphane" last="Christodoulou">Stéphane Christodoulou</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Volkman, John K" sort="Volkman, John K" uniqKey="Volkman J" first="John K." last="Volkman">John K. Volkman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research, GPO Box 1538</s1>
<s2>Hobart, Tasmania 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Phytochemistry</title>
<title level="j" type="abbreviated">Phytochemistry</title>
<idno type="ISSN">0031-9422</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Phytochemistry</title>
<title level="j" type="abbreviated">Phytochemistry</title>
<idno type="ISSN">0031-9422</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autoxidation</term>
<term>Carbon dioxide</term>
<term>Chlorophyll</term>
<term>Degradation product</term>
<term>Diol</term>
<term>EC 6.3.3.1</term>
<term>Fatty acids</term>
<term>Free radical</term>
<term>Growth</term>
<term>Lipids</term>
<term>Long chain</term>
<term>Oleic acid</term>
<term>Oxidation</term>
<term>Photooxidation</term>
<term>Polyunsaturated fatty acid</term>
<term>Reduction</term>
<term>Steroid</term>
<term>Strain</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Radical libre</term>
<term>Oxydation</term>
<term>Autooxydation</term>
<term>Lipide</term>
<term>Souche</term>
<term>Croissance</term>
<term>Acide gras</term>
<term>Acide gras polyinsaturé</term>
<term>Réduction</term>
<term>Carbone dioxyde</term>
<term>Oléique acide</term>
<term>Photooxydation</term>
<term>Produit dégradation</term>
<term>Diol</term>
<term>Chlorophylle</term>
<term>Stéroïde</term>
<term>Chaîne longue</term>
<term>EC 6.3.3.1</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO
<sub>2</sub>
showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C
<sub>22:6</sub>
) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH
<sub>4</sub>
-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ
<sup>5</sup>
-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ
<sup>5</sup>
double bond of epi-brassicasterol and minor amounts of Δ
<sup>4</sup>
-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO
<sub>2</sub>
likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO
<sub>2</sub>
, but not when grown with 0.5% CO
<sub>2</sub>
. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0031-9422</s0>
</fA01>
<fA03 i2="1">
<s0>Phytochemistry</s0>
</fA03>
<fA05>
<s2>68</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RONTANI (Jean-Francois)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JAMESON (Ian)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHRISTODOULOU (Stéphane)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VOLKMAN (John K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research, GPO Box 1538</s1>
<s2>Hobart, Tasmania 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>913-924</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9408</s2>
<s5>354000143562740200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0171394</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Phytochemistry</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO
<sub>2</sub>
showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C
<sub>22:6</sub>
) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH
<sub>4</sub>
-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ
<sup>5</sup>
-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ
<sup>5</sup>
double bond of epi-brassicasterol and minor amounts of Δ
<sup>4</sup>
-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO
<sub>2</sub>
likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO
<sub>2</sub>
, but not when grown with 0.5% CO
<sub>2</sub>
. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A10E01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Radical libre</s0>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Free radical</s0>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Radical libre</s0>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Autooxydation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Autoxidation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Autooxidación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Lipide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Lipids</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Lípido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Souche</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Strain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cepa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Growth</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Acide gras</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fatty acids</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Acido graso</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Acide gras polyinsaturé</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Polyunsaturated fatty acid</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acido graso poliinsaturado</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Réduction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Reduction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Reducción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oléique acide</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Oleic acid</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Oleico ácido</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Photooxydation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Photooxidation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fotooxidación</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Produit dégradation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Degradation product</s0>
<s5>34</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Producto degradación</s0>
<s5>34</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diol</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Diol</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Diol</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Chlorophylle</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Chlorophyll</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Clorofila</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Stéroïde</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Steroid</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Esteroide</s0>
<s5>37</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Chaîne longue</s0>
<s5>38</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Long chain</s0>
<s5>38</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Cadena larga</s0>
<s5>38</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>EC 6.3.3.1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>EC 6.3.3.1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>121</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0171394 INIST</NO>
<ET>Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi</ET>
<AU>RONTANI (Jean-Francois); JAMESON (Ian); CHRISTODOULOU (Stéphane); VOLKMAN (John K.)</AU>
<AF>Laboratoire de Microbiologie Géochimie et Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, case 901/13288 Marseille/France (1 aut., 3 aut.); CSIRO Marine and Atmospheric Research, GPO Box 1538/Hobart, Tasmania 7001/Australie (2 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Phytochemistry; ISSN 0031-9422; Pays-Bas; Da. 2007; Vol. 68; No. 6; Pp. 913-924; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO
<sub>2</sub>
showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C18:5, C18:3 and C
<sub>22:6</sub>
) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH
<sub>4</sub>
-reduction) of a high proportion of 1 -hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7, 11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7, 11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Δ
<sup>5</sup>
-3β,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Δ
<sup>5</sup>
double bond of epi-brassicasterol and minor amounts of Δ
<sup>4</sup>
-3β,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO
<sub>2</sub>
likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO
<sub>2</sub>
, but not when grown with 0.5% CO
<sub>2</sub>
. The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.</EA>
<CC>002A10D; 002A10E01</CC>
<FD>Radical libre; Oxydation; Autooxydation; Lipide; Souche; Croissance; Acide gras; Acide gras polyinsaturé; Réduction; Carbone dioxyde; Oléique acide; Photooxydation; Produit dégradation; Diol; Chlorophylle; Stéroïde; Chaîne longue; EC 6.3.3.1</FD>
<ED>Free radical; Oxidation; Autoxidation; Lipids; Strain; Growth; Fatty acids; Polyunsaturated fatty acid; Reduction; Carbon dioxide; Oleic acid; Photooxidation; Degradation product; Diol; Chlorophyll; Steroid; Long chain; EC 6.3.3.1</ED>
<SD>Radical libre; Oxidación; Autooxidación; Lípido; Cepa; Crecimiento; Acido graso; Acido graso poliinsaturado; Reducción; Carbono dióxido; Oleico ácido; Fotooxidación; Producto degradación; Diol; Clorofila; Esteroide; Cadena larga</SD>
<LO>INIST-9408.354000143562740200</LO>
<ID>07-0171394</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003D20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0171394
   |texte=   Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024