Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud

Identifieur interne : 003D03 ( PascalFrancis/Corpus ); précédent : 003D02; suivant : 003D04

Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud

Auteurs : Eric Lagadec ; Albert A. Zijlstra ; G. C. Sloan ; Mikako Matsuura ; Peter R. Wood ; Jacco Th. Van Loon ; G. J. Harris ; J. A. D. L. Blommaert ; S. Hony ; M. A. T. Groenewegen ; M. W. Feast ; P. A. Whitelock ; J. W. Menzies ; M.-R. Cioni

Source :

RBID : Pascal:07-0188922

Descripteurs français

English descriptors

Abstract

We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C2H2 bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 105 yr. For the LMC, this lifetime is ∼3 x 105 yr. The superwind phase traced with Spitzer lasts for ∼104 yr. Spitzer spectra of a K supergiant and a compact H II region are also given.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 376
A06       @2 3
A08 01  1  ENG  @1 Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud
A11 01  1    @1 LAGADEC (Eric)
A11 02  1    @1 ZIJLSTRA (Albert A.)
A11 03  1    @1 SLOAN (G. C.)
A11 04  1    @1 MATSUURA (Mikako)
A11 05  1    @1 WOOD (Peter R.)
A11 06  1    @1 VAN LOON (Jacco Th.)
A11 07  1    @1 HARRIS (G. J.)
A11 08  1    @1 BLOMMAERT (J. A. D. L.)
A11 09  1    @1 HONY (S.)
A11 10  1    @1 GROENEWEGEN (M. A. T.)
A11 11  1    @1 FEAST (M. W.)
A11 12  1    @1 WHITELOCK (P. A.)
A11 13  1    @1 MENZIES (J. W.)
A11 14  1    @1 CIONI (M.-R.)
A14 01      @1 University of Manchester School of Physics & Astronomy, PO Box 88 @2 Manchester M60 1QD @3 GBR @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Department of Astronomy, Cornell University, 108 Space Sciences Building @2 Ithaca, NY 14853-6801 @3 USA @Z 3 aut.
A14 03      @1 Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1 @2 Mitaka, Tokyo 181-8588 @3 JPN @Z 4 aut.
A14 04      @1 Research School of Astronomy and Astrophysics, Australian National University, Cotter Road @2 Weston Creek, ACT 2611 @3 AUS @Z 5 aut.
A14 05      @1 Astrophysics Group, School of Physical & Geographical Sciences, Keele University @2 Staffordshire ST5 5BG @3 GBR @Z 6 aut.
A14 06      @1 Department of Physics and Astronomy, University College London, Gower Street @2 London WC1E 6BT @3 GBR @Z 7 aut.
A14 07      @1 Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D @2 3001 Leuven @3 BEL @Z 8 aut. @Z 10 aut.
A14 08      @1 CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 9 aut.
A14 09      @1 Department of Astronomy, University of Cape Town @2 7701 Rondebosch @3 ZAF @Z 11 aut. @Z 12 aut. @Z 13 aut.
A14 10      @1 South African Astronomical Observatory, PO Box 9 @2 7935 Observatory @3 ZAF @Z 12 aut.
A14 11      @1 NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town @2 7701 Rondebosch @3 ZAF @Z 12 aut.
A14 12      @1 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill @2 Edinburgh EH9 3HJ @3 GBR @Z 14 aut.
A20       @1 1270-1284
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000147122370300
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 07-0188922
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 GBR
C01 01    ENG  @0 We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C2H2 bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 105 yr. For the LMC, this lifetime is ∼3 x 105 yr. The superwind phase traced with Spitzer lasts for ∼104 yr. Spitzer spectra of a K supergiant and a compact H II region are also given.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Spectrométrie @5 26
C03 01  3  ENG  @0 Spectroscopy @5 26
C03 02  3  FRE  @0 Etoile carbone @2 NO @5 27
C03 02  3  ENG  @0 Carbon stars @2 NO @5 27
C03 03  3  FRE  @0 Petit Nuage Magellan @5 28
C03 03  3  ENG  @0 Small Magellanic Cloud @5 28
C03 04  X  FRE  @0 Observation spectroscopique @5 29
C03 04  X  ENG  @0 Spectroscopical observation @5 29
C03 04  X  SPA  @0 Observación espectroscópica @5 29
C03 05  X  FRE  @0 Branche géante asymptotique @5 30
C03 05  X  ENG  @0 Asymptotic giant branch @5 30
C03 05  X  SPA  @0 Rama gigante asintótica @5 30
C03 06  3  FRE  @0 Grand Nuage Magellan @5 31
C03 06  3  ENG  @0 Large Magellanic Cloud @5 31
C03 07  3  FRE  @0 Galaxies @5 32
C03 07  3  ENG  @0 Galaxies @5 32
C03 08  3  FRE  @0 Matière interstellaire @5 33
C03 08  3  ENG  @0 Interstellar matter @5 33
C03 09  3  FRE  @0 Masse stellaire @5 34
C03 09  3  ENG  @0 Stellar mass @5 34
C03 10  X  FRE  @0 Poussière circumstellaire @5 35
C03 10  X  ENG  @0 Circumstellar dust @5 35
C03 10  X  SPA  @0 Polvo circunstelar @5 35
C03 11  X  FRE  @0 Epaisseur optique @5 36
C03 11  X  ENG  @0 Optical thickness @5 36
C03 11  X  SPA  @0 Espesor óptico @5 36
C03 12  3  FRE  @0 Etoile centrale @5 37
C03 12  3  ENG  @0 Central stars @5 37
C03 13  X  FRE  @0 Métallicité @5 38
C03 13  X  ENG  @0 Metallicity @5 38
C03 13  X  SPA  @0 Metalicidad @5 38
C03 14  X  FRE  @0 Diagramme 2 couleurs @5 39
C03 14  X  ENG  @0 Two color diagram @5 39
C03 14  X  SPA  @0 Diagrama 2 colores @5 39
C03 15  3  FRE  @0 Couleur @5 40
C03 15  3  ENG  @0 Color @5 40
C03 16  X  FRE  @0 Etoile C @5 41
C03 16  X  ENG  @0 C star @5 41
C03 16  X  SPA  @0 Estrella C @5 41
C03 17  X  FRE  @0 Evolution thermique @5 42
C03 17  X  ENG  @0 Thermal evolution @5 42
C03 17  X  SPA  @0 Evolución térmica @5 42
C03 18  3  FRE  @0 Durée vie @5 43
C03 18  3  ENG  @0 Lifetime @5 43
C03 19  3  FRE  @0 Supergéante @5 44
C03 19  3  ENG  @0 Supergiant stars @5 44
C03 20  X  FRE  @0 Région H II compacte @5 45
C03 20  X  ENG  @0 Compact H II region @5 45
C03 20  X  SPA  @0 Región H II compacta @5 45
C03 21  3  FRE  @0 Matière circumstellaire @5 46
C03 21  3  ENG  @0 Circumstellar matter @5 46
C03 22  3  FRE  @0 Perte masse @5 47
C03 22  3  ENG  @0 Mass loss @5 47
C03 23  3  FRE  @0 Nuages Magellan @5 48
C03 23  3  ENG  @0 Magellanic Clouds @5 48
C03 24  X  FRE  @0 Etoile IR @5 49
C03 24  X  ENG  @0 Infrared star @5 49
C03 24  X  SPA  @0 Estrella IR @5 49
C03 25  3  FRE  @0 Rapport carbone oxygène @4 CD @5 96
C03 25  3  ENG  @0 Carbon oxygen ratio @4 CD @5 96
C03 25  3  SPA  @0 Relación carbono oxígeno @4 CD @5 96
N21       @1 128
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0188922 INIST
ET : Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud
AU : LAGADEC (Eric); ZIJLSTRA (Albert A.); SLOAN (G. C.); MATSUURA (Mikako); WOOD (Peter R.); VAN LOON (Jacco Th.); HARRIS (G. J.); BLOMMAERT (J. A. D. L.); HONY (S.); GROENEWEGEN (M. A. T.); FEAST (M. W.); WHITELOCK (P. A.); MENZIES (J. W.); CIONI (M.-R.)
AF : University of Manchester School of Physics & Astronomy, PO Box 88/Manchester M60 1QD/Royaume-Uni (1 aut., 2 aut., 4 aut.); Department of Astronomy, Cornell University, 108 Space Sciences Building/Ithaca, NY 14853-6801/Etats-Unis (3 aut.); Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1/Mitaka, Tokyo 181-8588/Japon (4 aut.); Research School of Astronomy and Astrophysics, Australian National University, Cotter Road/Weston Creek, ACT 2611/Australie (5 aut.); Astrophysics Group, School of Physical & Geographical Sciences, Keele University/Staffordshire ST5 5BG/Royaume-Uni (6 aut.); Department of Physics and Astronomy, University College London, Gower Street/London WC1E 6BT/Royaume-Uni (7 aut.); Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D/3001 Leuven/Belgique (8 aut., 10 aut.); CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay/91191 Gif-sur-Yvette/France (9 aut.); Department of Astronomy, University of Cape Town/7701 Rondebosch/Afrique du Sud (11 aut., 12 aut., 13 aut.); South African Astronomical Observatory, PO Box 9/7935 Observatory/Afrique du Sud (12 aut.); NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town/7701 Rondebosch/Afrique du Sud (12 aut.); Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill/Edinburgh EH9 3HJ/Royaume-Uni (14 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2007; Vol. 376; No. 3; Pp. 1270-1284; Bibl. 3/4 p.
LA : Anglais
EA : We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C2H2 bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 105 yr. For the LMC, this lifetime is ∼3 x 105 yr. The superwind phase traced with Spitzer lasts for ∼104 yr. Spitzer spectra of a K supergiant and a compact H II region are also given.
CC : 001E03
FD : Spectrométrie; Etoile carbone; Petit Nuage Magellan; Observation spectroscopique; Branche géante asymptotique; Grand Nuage Magellan; Galaxies; Matière interstellaire; Masse stellaire; Poussière circumstellaire; Epaisseur optique; Etoile centrale; Métallicité; Diagramme 2 couleurs; Couleur; Etoile C; Evolution thermique; Durée vie; Supergéante; Région H II compacte; Matière circumstellaire; Perte masse; Nuages Magellan; Etoile IR; Rapport carbone oxygène
ED : Spectroscopy; Carbon stars; Small Magellanic Cloud; Spectroscopical observation; Asymptotic giant branch; Large Magellanic Cloud; Galaxies; Interstellar matter; Stellar mass; Circumstellar dust; Optical thickness; Central stars; Metallicity; Two color diagram; Color; C star; Thermal evolution; Lifetime; Supergiant stars; Compact H II region; Circumstellar matter; Mass loss; Magellanic Clouds; Infrared star; Carbon oxygen ratio
SD : Observación espectroscópica; Rama gigante asintótica; Polvo circunstelar; Espesor óptico; Metalicidad; Diagrama 2 colores; Estrella C; Evolución térmica; Región H II compacta; Estrella IR; Relación carbono oxígeno
LO : INIST-2067.354000147122370300
ID : 07-0188922

Links to Exploration step

Pascal:07-0188922

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud</title>
<author>
<name sortKey="Lagadec, Eric" sort="Lagadec, Eric" uniqKey="Lagadec E" first="Eric" last="Lagadec">Eric Lagadec</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zijlstra, Albert A" sort="Zijlstra, Albert A" uniqKey="Zijlstra A" first="Albert A." last="Zijlstra">Albert A. Zijlstra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sloan, G C" sort="Sloan, G C" uniqKey="Sloan G" first="G. C." last="Sloan">G. C. Sloan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy, Cornell University, 108 Space Sciences Building</s1>
<s2>Ithaca, NY 14853-6801</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matsuura, Mikako" sort="Matsuura, Mikako" uniqKey="Matsuura M" first="Mikako" last="Matsuura">Mikako Matsuura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1</s1>
<s2>Mitaka, Tokyo 181-8588</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wood, Peter R" sort="Wood, Peter R" uniqKey="Wood P" first="Peter R." last="Wood">Peter R. Wood</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Road</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Van Loon, Jacco Th" sort="Van Loon, Jacco Th" uniqKey="Van Loon J" first="Jacco Th." last="Van Loon">Jacco Th. Van Loon</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Astrophysics Group, School of Physical & Geographical Sciences, Keele University</s1>
<s2>Staffordshire ST5 5BG</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harris, G J" sort="Harris, G J" uniqKey="Harris G" first="G. J." last="Harris">G. J. Harris</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Physics and Astronomy, University College London, Gower Street</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Blommaert, J A D L" sort="Blommaert, J A D L" uniqKey="Blommaert J" first="J. A. D. L." last="Blommaert">J. A. D. L. Blommaert</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hony, S" sort="Hony, S" uniqKey="Hony S" first="S." last="Hony">S. Hony</name>
<affiliation>
<inist:fA14 i1="08">
<s1>CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groenewegen, M A T" sort="Groenewegen, M A T" uniqKey="Groenewegen M" first="M. A. T." last="Groenewegen">M. A. T. Groenewegen</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feast, M W" sort="Feast, M W" uniqKey="Feast M" first="M. W." last="Feast">M. W. Feast</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Whitelock, P A" sort="Whitelock, P A" uniqKey="Whitelock P" first="P. A." last="Whitelock">P. A. Whitelock</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="10">
<s1>South African Astronomical Observatory, PO Box 9</s1>
<s2>7935 Observatory</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="11">
<s1>NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Menzies, J W" sort="Menzies, J W" uniqKey="Menzies J" first="J. W." last="Menzies">J. W. Menzies</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cioni, M R" sort="Cioni, M R" uniqKey="Cioni M" first="M.-R." last="Cioni">M.-R. Cioni</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill</s1>
<s2>Edinburgh EH9 3HJ</s2>
<s3>GBR</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0188922</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0188922 INIST</idno>
<idno type="RBID">Pascal:07-0188922</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003D03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud</title>
<author>
<name sortKey="Lagadec, Eric" sort="Lagadec, Eric" uniqKey="Lagadec E" first="Eric" last="Lagadec">Eric Lagadec</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zijlstra, Albert A" sort="Zijlstra, Albert A" uniqKey="Zijlstra A" first="Albert A." last="Zijlstra">Albert A. Zijlstra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sloan, G C" sort="Sloan, G C" uniqKey="Sloan G" first="G. C." last="Sloan">G. C. Sloan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy, Cornell University, 108 Space Sciences Building</s1>
<s2>Ithaca, NY 14853-6801</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matsuura, Mikako" sort="Matsuura, Mikako" uniqKey="Matsuura M" first="Mikako" last="Matsuura">Mikako Matsuura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1</s1>
<s2>Mitaka, Tokyo 181-8588</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wood, Peter R" sort="Wood, Peter R" uniqKey="Wood P" first="Peter R." last="Wood">Peter R. Wood</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Road</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Van Loon, Jacco Th" sort="Van Loon, Jacco Th" uniqKey="Van Loon J" first="Jacco Th." last="Van Loon">Jacco Th. Van Loon</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Astrophysics Group, School of Physical & Geographical Sciences, Keele University</s1>
<s2>Staffordshire ST5 5BG</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harris, G J" sort="Harris, G J" uniqKey="Harris G" first="G. J." last="Harris">G. J. Harris</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Physics and Astronomy, University College London, Gower Street</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Blommaert, J A D L" sort="Blommaert, J A D L" uniqKey="Blommaert J" first="J. A. D. L." last="Blommaert">J. A. D. L. Blommaert</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hony, S" sort="Hony, S" uniqKey="Hony S" first="S." last="Hony">S. Hony</name>
<affiliation>
<inist:fA14 i1="08">
<s1>CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Groenewegen, M A T" sort="Groenewegen, M A T" uniqKey="Groenewegen M" first="M. A. T." last="Groenewegen">M. A. T. Groenewegen</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feast, M W" sort="Feast, M W" uniqKey="Feast M" first="M. W." last="Feast">M. W. Feast</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Whitelock, P A" sort="Whitelock, P A" uniqKey="Whitelock P" first="P. A." last="Whitelock">P. A. Whitelock</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="10">
<s1>South African Astronomical Observatory, PO Box 9</s1>
<s2>7935 Observatory</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="11">
<s1>NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Menzies, J W" sort="Menzies, J W" uniqKey="Menzies J" first="J. W." last="Menzies">J. W. Menzies</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cioni, M R" sort="Cioni, M R" uniqKey="Cioni M" first="M.-R." last="Cioni">M.-R. Cioni</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill</s1>
<s2>Edinburgh EH9 3HJ</s2>
<s3>GBR</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asymptotic giant branch</term>
<term>C star</term>
<term>Carbon oxygen ratio</term>
<term>Carbon stars</term>
<term>Central stars</term>
<term>Circumstellar dust</term>
<term>Circumstellar matter</term>
<term>Color</term>
<term>Compact H II region</term>
<term>Galaxies</term>
<term>Infrared star</term>
<term>Interstellar matter</term>
<term>Large Magellanic Cloud</term>
<term>Lifetime</term>
<term>Magellanic Clouds</term>
<term>Mass loss</term>
<term>Metallicity</term>
<term>Optical thickness</term>
<term>Small Magellanic Cloud</term>
<term>Spectroscopical observation</term>
<term>Spectroscopy</term>
<term>Stellar mass</term>
<term>Supergiant stars</term>
<term>Thermal evolution</term>
<term>Two color diagram</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectrométrie</term>
<term>Etoile carbone</term>
<term>Petit Nuage Magellan</term>
<term>Observation spectroscopique</term>
<term>Branche géante asymptotique</term>
<term>Grand Nuage Magellan</term>
<term>Galaxies</term>
<term>Matière interstellaire</term>
<term>Masse stellaire</term>
<term>Poussière circumstellaire</term>
<term>Epaisseur optique</term>
<term>Etoile centrale</term>
<term>Métallicité</term>
<term>Diagramme 2 couleurs</term>
<term>Couleur</term>
<term>Etoile C</term>
<term>Evolution thermique</term>
<term>Durée vie</term>
<term>Supergéante</term>
<term>Région H II compacte</term>
<term>Matière circumstellaire</term>
<term>Perte masse</term>
<term>Nuages Magellan</term>
<term>Etoile IR</term>
<term>Rapport carbone oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C
<sub>2</sub>
H
<sub>2</sub>
bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 10
<sup>5</sup>
yr. For the LMC, this lifetime is ∼3 x 10
<sup>5</sup>
yr. The superwind phase traced with Spitzer lasts for ∼10
<sup>4</sup>
yr. Spitzer spectra of a K supergiant and a compact H II region are also given.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>376</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAGADEC (Eric)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZIJLSTRA (Albert A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SLOAN (G. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MATSUURA (Mikako)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WOOD (Peter R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAN LOON (Jacco Th.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HARRIS (G. J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BLOMMAERT (J. A. D. L.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>HONY (S.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>GROENEWEGEN (M. A. T.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>FEAST (M. W.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>WHITELOCK (P. A.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>MENZIES (J. W.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>CIONI (M.-R.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Manchester School of Physics & Astronomy, PO Box 88</s1>
<s2>Manchester M60 1QD</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Astronomy, Cornell University, 108 Space Sciences Building</s1>
<s2>Ithaca, NY 14853-6801</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1</s1>
<s2>Mitaka, Tokyo 181-8588</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Road</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Astrophysics Group, School of Physical & Geographical Sciences, Keele University</s1>
<s2>Staffordshire ST5 5BG</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Physics and Astronomy, University College London, Gower Street</s1>
<s2>London WC1E 6BT</s2>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>Department of Astronomy, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>South African Astronomical Observatory, PO Box 9</s1>
<s2>7935 Observatory</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="11">
<s1>NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town</s1>
<s2>7701 Rondebosch</s2>
<s3>ZAF</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="12">
<s1>Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill</s1>
<s2>Edinburgh EH9 3HJ</s2>
<s3>GBR</s3>
<sZ>14 aut.</sZ>
</fA14>
<fA20>
<s1>1270-1284</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000147122370300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0188922</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C
<sub>2</sub>
H
<sub>2</sub>
bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 10
<sup>5</sup>
yr. For the LMC, this lifetime is ∼3 x 10
<sup>5</sup>
yr. The superwind phase traced with Spitzer lasts for ∼10
<sup>4</sup>
yr. Spitzer spectra of a K supergiant and a compact H II region are also given.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectrométrie</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Spectroscopy</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etoile carbone</s0>
<s2>NO</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Carbon stars</s0>
<s2>NO</s2>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Petit Nuage Magellan</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Small Magellanic Cloud</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Observation spectroscopique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Spectroscopical observation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Observación espectroscópica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Branche géante asymptotique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Asymptotic giant branch</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rama gigante asintótica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Grand Nuage Magellan</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Large Magellanic Cloud</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Galaxies</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Galaxies</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Matière interstellaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Interstellar matter</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Masse stellaire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Stellar mass</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Poussière circumstellaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Circumstellar dust</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Polvo circunstelar</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Epaisseur optique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical thickness</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espesor óptico</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etoile centrale</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Central stars</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Métallicité</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Metallicity</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Metalicidad</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diagramme 2 couleurs</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Two color diagram</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Diagrama 2 colores</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couleur</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Color</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Etoile C</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>C star</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estrella C</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Evolution thermique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thermal evolution</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Evolución térmica</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Durée vie</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Lifetime</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Supergéante</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Supergiant stars</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Région H II compacte</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Compact H II region</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Región H II compacta</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Matière circumstellaire</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Circumstellar matter</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Perte masse</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Mass loss</s0>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Nuages Magellan</s0>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Magellanic Clouds</s0>
<s5>48</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Etoile IR</s0>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Infrared star</s0>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Estrella IR</s0>
<s5>49</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Rapport carbone oxygène</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Carbon oxygen ratio</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="SPA">
<s0>Relación carbono oxígeno</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>128</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0188922 INIST</NO>
<ET>Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud</ET>
<AU>LAGADEC (Eric); ZIJLSTRA (Albert A.); SLOAN (G. C.); MATSUURA (Mikako); WOOD (Peter R.); VAN LOON (Jacco Th.); HARRIS (G. J.); BLOMMAERT (J. A. D. L.); HONY (S.); GROENEWEGEN (M. A. T.); FEAST (M. W.); WHITELOCK (P. A.); MENZIES (J. W.); CIONI (M.-R.)</AU>
<AF>University of Manchester School of Physics & Astronomy, PO Box 88/Manchester M60 1QD/Royaume-Uni (1 aut., 2 aut., 4 aut.); Department of Astronomy, Cornell University, 108 Space Sciences Building/Ithaca, NY 14853-6801/Etats-Unis (3 aut.); Division of Optical and IR Astronomy, National Astronomical Observatory of Japan, Osawa 2-21-1/Mitaka, Tokyo 181-8588/Japon (4 aut.); Research School of Astronomy and Astrophysics, Australian National University, Cotter Road/Weston Creek, ACT 2611/Australie (5 aut.); Astrophysics Group, School of Physical & Geographical Sciences, Keele University/Staffordshire ST5 5BG/Royaume-Uni (6 aut.); Department of Physics and Astronomy, University College London, Gower Street/London WC1E 6BT/Royaume-Uni (7 aut.); Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200 D/3001 Leuven/Belgique (8 aut., 10 aut.); CEA, DSM, DAPNIA, Service d'Astrophysique, C.E. Saclay/91191 Gif-sur-Yvette/France (9 aut.); Department of Astronomy, University of Cape Town/7701 Rondebosch/Afrique du Sud (11 aut., 12 aut., 13 aut.); South African Astronomical Observatory, PO Box 9/7935 Observatory/Afrique du Sud (12 aut.); NASSP, Department of Mathematics & Applied Mathematics, University of Cape Town/7701 Rondebosch/Afrique du Sud (12 aut.); Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill/Edinburgh EH9 3HJ/Royaume-Uni (14 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2007; Vol. 376; No. 3; Pp. 1270-1284; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>We present Spitzer Space Telescope spectroscopic observations of 14 carbon-rich asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC). SiC dust is seen in most of the carbon-rich stars but it is weak compared to Large Magellanic Cloud (LMC) stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas in the Galaxy SiC and graphite condensate at more comparable temperatures. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30- μm band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C
<sub>2</sub>
H
<sub>2</sub>
bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for ∼6 x 10
<sup>5</sup>
yr. For the LMC, this lifetime is ∼3 x 10
<sup>5</sup>
yr. The superwind phase traced with Spitzer lasts for ∼10
<sup>4</sup>
yr. Spitzer spectra of a K supergiant and a compact H II region are also given.</EA>
<CC>001E03</CC>
<FD>Spectrométrie; Etoile carbone; Petit Nuage Magellan; Observation spectroscopique; Branche géante asymptotique; Grand Nuage Magellan; Galaxies; Matière interstellaire; Masse stellaire; Poussière circumstellaire; Epaisseur optique; Etoile centrale; Métallicité; Diagramme 2 couleurs; Couleur; Etoile C; Evolution thermique; Durée vie; Supergéante; Région H II compacte; Matière circumstellaire; Perte masse; Nuages Magellan; Etoile IR; Rapport carbone oxygène</FD>
<ED>Spectroscopy; Carbon stars; Small Magellanic Cloud; Spectroscopical observation; Asymptotic giant branch; Large Magellanic Cloud; Galaxies; Interstellar matter; Stellar mass; Circumstellar dust; Optical thickness; Central stars; Metallicity; Two color diagram; Color; C star; Thermal evolution; Lifetime; Supergiant stars; Compact H II region; Circumstellar matter; Mass loss; Magellanic Clouds; Infrared star; Carbon oxygen ratio</ED>
<SD>Observación espectroscópica; Rama gigante asintótica; Polvo circunstelar; Espesor óptico; Metalicidad; Diagrama 2 colores; Estrella C; Evolución térmica; Región H II compacta; Estrella IR; Relación carbono oxígeno</SD>
<LO>INIST-2067.354000147122370300</LO>
<ID>07-0188922</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003D03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0188922
   |texte=   Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024