Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon

Identifieur interne : 003C37 ( PascalFrancis/Corpus ); précédent : 003C36; suivant : 003C38

Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon

Auteurs : N. Balcon ; A. Aanesland ; R. Boswell

Source :

RBID : Pascal:07-0244046

Descripteurs français

English descriptors

Abstract

The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0963-0252
A03   1    @0 Plasma sources sci. technol. : (Print)
A05       @2 16
A06       @2 2
A08 01  1  ENG  @1 Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon
A11 01  1    @1 BALCON (N.)
A11 02  1    @1 AANESLAND (A.)
A11 03  1    @1 BOSWELL (R.)
A14 01      @1 RSPhysSE, Australian National University @2 Canberra 0200 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 CPAT, Université Paul Sabatier @2 Toulouse 31000 @3 FRA @Z 1 aut.
A20       @1 217-225
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 26250 @5 354000159901130020
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 07-0244046
A60       @1 P
A61       @0 A
A64 01  1    @0 Plasma sources science & technology : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.
C02 01  3    @0 001B50B80P
C02 02  3    @0 001B50B80H
C02 03  3    @0 001B50B80T
C02 04  3    @0 001B50B70K
C03 01  3  FRE  @0 Décharge luminescente @5 03
C03 01  3  ENG  @0 Glow discharges @5 03
C03 02  X  FRE  @0 Décharge capacitive @5 04
C03 02  X  ENG  @0 Capacitive discharge @5 04
C03 02  X  SPA  @0 Descarga capacitiva @5 04
C03 03  X  FRE  @0 Raie émission @5 05
C03 03  X  ENG  @0 Emission line @5 05
C03 03  X  SPA  @0 Raya emisión @5 05
C03 04  3  FRE  @0 Equation Saha @5 23
C03 04  3  ENG  @0 Saha equation @5 23
C03 05  3  FRE  @0 Pression atmosphérique @5 30
C03 05  3  ENG  @0 Atmospheric pressure @5 30
C03 06  3  FRE  @0 Spectrométrie émission @5 31
C03 06  3  ENG  @0 Emission spectroscopy @5 31
C03 07  3  FRE  @0 Diagnostic plasma @5 32
C03 07  3  ENG  @0 Plasma diagnostics @5 32
C03 08  3  FRE  @0 Etude expérimentale @5 33
C03 08  3  ENG  @0 Experimental study @5 33
C03 09  X  FRE  @0 Basse température @5 34
C03 09  X  ENG  @0 Low temperature @5 34
C03 09  X  SPA  @0 Baja temperatura @5 34
C03 10  3  FRE  @0 Température plasma @5 41
C03 10  3  ENG  @0 Plasma temperature @5 41
C03 11  3  FRE  @0 Densité plasma @5 42
C03 11  3  ENG  @0 Plasma density @5 42
C03 12  3  FRE  @0 Température électron @5 43
C03 12  3  ENG  @0 Electron temperature @5 43
C03 13  3  FRE  @0 Argon @2 NC @5 57
C03 13  3  ENG  @0 Argon @2 NC @5 57
C03 14  3  FRE  @0 Hydrogène @2 NC @5 58
C03 14  3  ENG  @0 Hydrogen @2 NC @5 58
C03 15  3  FRE  @0 Polymère @5 59
C03 15  3  ENG  @0 Polymers @5 59
C03 16  3  FRE  @0 Décharge électrique @5 61
C03 16  3  ENG  @0 Electric discharges @5 61
C03 17  X  FRE  @0 Durée impulsion @5 62
C03 17  X  ENG  @0 Pulse width @5 62
C03 17  X  SPA  @0 Duración impulso @5 62
C03 18  X  FRE  @0 Méthode optique @5 63
C03 18  X  ENG  @0 Optical method @5 63
C03 18  X  SPA  @0 Método óptico @5 63
C03 19  3  FRE  @0 Bilan énergie @5 64
C03 19  3  ENG  @0 Energy balance @5 64
C03 20  3  FRE  @0 5270K @4 INC @5 83
C03 21  3  FRE  @0 5280P @4 INC @5 91
C03 22  3  FRE  @0 5280H @4 INC @5 92
C03 23  3  FRE  @0 5280T @4 INC @5 93
C03 24  3  FRE  @0 5270 @4 INC @5 94
C03 25  3  FRE  @0 Décharge radiofréquence @4 CD @5 96
C03 25  3  ENG  @0 Radiofrequency discharge @4 CD @5 96
N21       @1 162
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0244046 INIST
ET : Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon
AU : BALCON (N.); AANESLAND (A.); BOSWELL (R.)
AF : RSPhysSE, Australian National University/Canberra 0200/Australie (1 aut., 2 aut., 3 aut.); CPAT, Université Paul Sabatier/Toulouse 31000/France (1 aut.)
DT : Publication en série; Niveau analytique
SO : Plasma sources science & technology : (Print); ISSN 0963-0252; Royaume-Uni; Da. 2007; Vol. 16; No. 2; Pp. 217-225; Bibl. 19 ref.
LA : Anglais
EA : The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.
CC : 001B50B80P; 001B50B80H; 001B50B80T; 001B50B70K
FD : Décharge luminescente; Décharge capacitive; Raie émission; Equation Saha; Pression atmosphérique; Spectrométrie émission; Diagnostic plasma; Etude expérimentale; Basse température; Température plasma; Densité plasma; Température électron; Argon; Hydrogène; Polymère; Décharge électrique; Durée impulsion; Méthode optique; Bilan énergie; 5270K; 5280P; 5280H; 5280T; 5270; Décharge radiofréquence
ED : Glow discharges; Capacitive discharge; Emission line; Saha equation; Atmospheric pressure; Emission spectroscopy; Plasma diagnostics; Experimental study; Low temperature; Plasma temperature; Plasma density; Electron temperature; Argon; Hydrogen; Polymers; Electric discharges; Pulse width; Optical method; Energy balance; Radiofrequency discharge
SD : Descarga capacitiva; Raya emisión; Baja temperatura; Duración impulso; Método óptico
LO : INIST-26250.354000159901130020
ID : 07-0244046

Links to Exploration step

Pascal:07-0244046

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon</title>
<author>
<name sortKey="Balcon, N" sort="Balcon, N" uniqKey="Balcon N" first="N." last="Balcon">N. Balcon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CPAT, Université Paul Sabatier</s1>
<s2>Toulouse 31000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aanesland, A" sort="Aanesland, A" uniqKey="Aanesland A" first="A." last="Aanesland">A. Aanesland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R." last="Boswell">R. Boswell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0244046</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0244046 INIST</idno>
<idno type="RBID">Pascal:07-0244046</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003C37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon</title>
<author>
<name sortKey="Balcon, N" sort="Balcon, N" uniqKey="Balcon N" first="N." last="Balcon">N. Balcon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CPAT, Université Paul Sabatier</s1>
<s2>Toulouse 31000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aanesland, A" sort="Aanesland, A" uniqKey="Aanesland A" first="A." last="Aanesland">A. Aanesland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R." last="Boswell">R. Boswell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plasma sources science & technology : (Print)</title>
<title level="j" type="abbreviated">Plasma sources sci. technol. : (Print)</title>
<idno type="ISSN">0963-0252</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plasma sources science & technology : (Print)</title>
<title level="j" type="abbreviated">Plasma sources sci. technol. : (Print)</title>
<idno type="ISSN">0963-0252</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Argon</term>
<term>Atmospheric pressure</term>
<term>Capacitive discharge</term>
<term>Electric discharges</term>
<term>Electron temperature</term>
<term>Emission line</term>
<term>Emission spectroscopy</term>
<term>Energy balance</term>
<term>Experimental study</term>
<term>Glow discharges</term>
<term>Hydrogen</term>
<term>Low temperature</term>
<term>Optical method</term>
<term>Plasma density</term>
<term>Plasma diagnostics</term>
<term>Plasma temperature</term>
<term>Polymers</term>
<term>Pulse width</term>
<term>Radiofrequency discharge</term>
<term>Saha equation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Décharge luminescente</term>
<term>Décharge capacitive</term>
<term>Raie émission</term>
<term>Equation Saha</term>
<term>Pression atmosphérique</term>
<term>Spectrométrie émission</term>
<term>Diagnostic plasma</term>
<term>Etude expérimentale</term>
<term>Basse température</term>
<term>Température plasma</term>
<term>Densité plasma</term>
<term>Température électron</term>
<term>Argon</term>
<term>Hydrogène</term>
<term>Polymère</term>
<term>Décharge électrique</term>
<term>Durée impulsion</term>
<term>Méthode optique</term>
<term>Bilan énergie</term>
<term>5270K</term>
<term>5280P</term>
<term>5280H</term>
<term>5280T</term>
<term>5270</term>
<term>Décharge radiofréquence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer H
<sub>β</sub>
line was measured to allow the plasma density to be estimated as 10
<sup>15</sup>
cm
<sup>-3</sup>
in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm
<sup>-3</sup>
. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0963-0252</s0>
</fA01>
<fA03 i2="1">
<s0>Plasma sources sci. technol. : (Print)</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BALCON (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AANESLAND (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOSWELL (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>RSPhysSE, Australian National University</s1>
<s2>Canberra 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CPAT, Université Paul Sabatier</s1>
<s2>Toulouse 31000</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>217-225</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26250</s2>
<s5>354000159901130020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0244046</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plasma sources science & technology : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer H
<sub>β</sub>
line was measured to allow the plasma density to be estimated as 10
<sup>15</sup>
cm
<sup>-3</sup>
in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm
<sup>-3</sup>
. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B80P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B50B80H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B50B80T</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B50B70K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Décharge luminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Glow discharges</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Décharge capacitive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Capacitive discharge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Descarga capacitiva</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Raie émission</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Emission line</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Raya emisión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Equation Saha</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Saha equation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Pression atmosphérique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Atmospheric pressure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Spectrométrie émission</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Emission spectroscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diagnostic plasma</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Plasma diagnostics</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Température plasma</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Plasma temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Densité plasma</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Plasma density</s0>
<s5>42</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Température électron</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electron temperature</s0>
<s5>43</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Argon</s0>
<s2>NC</s2>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Argon</s0>
<s2>NC</s2>
<s5>57</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>58</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>58</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>59</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>59</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Décharge électrique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Electric discharges</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Durée impulsion</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Pulse width</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Duración impulso</s0>
<s5>62</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Méthode optique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Optical method</s0>
<s5>63</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Método óptico</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Bilan énergie</s0>
<s5>64</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Energy balance</s0>
<s5>64</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>5270K</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>5280P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>5280H</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>5280T</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>5270</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Décharge radiofréquence</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Radiofrequency discharge</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>162</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0244046 INIST</NO>
<ET>Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon</ET>
<AU>BALCON (N.); AANESLAND (A.); BOSWELL (R.)</AU>
<AF>RSPhysSE, Australian National University/Canberra 0200/Australie (1 aut., 2 aut., 3 aut.); CPAT, Université Paul Sabatier/Toulouse 31000/France (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Plasma sources science & technology : (Print); ISSN 0963-0252; Royaume-Uni; Da. 2007; Vol. 16; No. 2; Pp. 217-225; Bibl. 19 ref.</SO>
<LA>Anglais</LA>
<EA>The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer H
<sub>β</sub>
line was measured to allow the plasma density to be estimated as 10
<sup>15</sup>
cm
<sup>-3</sup>
in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm
<sup>-3</sup>
. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low.</EA>
<CC>001B50B80P; 001B50B80H; 001B50B80T; 001B50B70K</CC>
<FD>Décharge luminescente; Décharge capacitive; Raie émission; Equation Saha; Pression atmosphérique; Spectrométrie émission; Diagnostic plasma; Etude expérimentale; Basse température; Température plasma; Densité plasma; Température électron; Argon; Hydrogène; Polymère; Décharge électrique; Durée impulsion; Méthode optique; Bilan énergie; 5270K; 5280P; 5280H; 5280T; 5270; Décharge radiofréquence</FD>
<ED>Glow discharges; Capacitive discharge; Emission line; Saha equation; Atmospheric pressure; Emission spectroscopy; Plasma diagnostics; Experimental study; Low temperature; Plasma temperature; Plasma density; Electron temperature; Argon; Hydrogen; Polymers; Electric discharges; Pulse width; Optical method; Energy balance; Radiofrequency discharge</ED>
<SD>Descarga capacitiva; Raya emisión; Baja temperatura; Duración impulso; Método óptico</SD>
<LO>INIST-26250.354000159901130020</LO>
<ID>07-0244046</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003C37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0244046
   |texte=   Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024