Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy

Identifieur interne : 003958 ( PascalFrancis/Corpus ); précédent : 003957; suivant : 003959

GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy

Auteurs : A. J. Gosling ; R. M. Bandyopadhyay ; J. C. A. Miller-Jones ; S. A. Farrell

Source :

RBID : Pascal:07-0455421

Descripteurs français

English descriptors

Abstract

Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M◦. for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 1011 G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 380
A06       @2 4
A08 01  1  ENG  @1 GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy
A11 01  1    @1 GOSLING (A. J.)
A11 02  1    @1 BANDYOPADHYAY (R. M.)
A11 03  1    @1 MILLER-JONES (J. C. A.)
A11 04  1    @1 FARRELL (S. A.)
A14 01      @1 Department of Astrophysics, University of Oxford, Keble Road @2 Oxford OX1 3RH @3 GBR @Z 1 aut.
A14 02      @1 Department of Astronomy, University of Florida @2 Gainesville, FL 32611 @3 USA @Z 2 aut.
A14 03      @1 Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403 @2 1098 SJ Amsterdam @3 NLD @Z 3 aut.
A14 04      @1 School ofPEMS, UNSW@ADFA, Northcott Drive @2 Canberra, ACT 2600 @3 AUS @Z 4 aut.
A14 05      @1 Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche @2 31028 Toulouse @3 FRA @Z 4 aut.
A20       @1 1511-1520
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000149805370170
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 07-0455421
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 GBR
C01 01    ENG  @0 Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M◦. for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 1011 G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Spectrométrie IR @5 26
C03 01  3  ENG  @0 Infrared spectroscopy @5 26
C03 02  X  FRE  @0 Photométrie IR @5 27
C03 02  X  ENG  @0 Infrared photometry @5 27
C03 02  X  SPA  @0 Fotometría IR @5 27
C03 03  3  FRE  @0 Pulsar @5 28
C03 03  3  ENG  @0 Pulsars @5 28
C03 04  X  FRE  @0 Cercle @5 29
C03 04  X  ENG  @0 Circle @5 29
C03 04  X  SPA  @0 Circulo @5 29
C03 05  X  FRE  @0 Type spectral @5 30
C03 05  X  ENG  @0 Spectral type @5 30
C03 05  X  SPA  @0 Tipo espectral @5 30
C03 06  X  FRE  @0 Correction extinction @5 31
C03 06  X  ENG  @0 Extinction correction @5 31
C03 06  X  SPA  @0 Corrección extinción @5 31
C03 07  X  FRE  @0 Bulbe galactique @5 32
C03 07  X  ENG  @0 Galactic bulge @5 32
C03 07  X  SPA  @0 Bulbo galáctico @5 32
C03 08  X  FRE  @0 Loi extinction @5 33
C03 08  X  ENG  @0 Extinction law @5 33
C03 08  X  SPA  @0 Ley extinción @5 33
C03 09  3  FRE  @0 Couleur @5 34
C03 09  3  ENG  @0 Color @5 34
C03 10  X  FRE  @0 Fonction masse @5 35
C03 10  X  ENG  @0 Mass function @5 35
C03 10  X  SPA  @0 Función masa @5 35
C03 11  3  FRE  @0 Spectrométrie émission @5 36
C03 11  3  ENG  @0 Emission spectroscopy @5 36
C03 12  3  FRE  @0 Accrétion @5 37
C03 12  3  ENG  @0 Accretion @5 37
C03 13  3  FRE  @0 Etoile G @5 38
C03 13  3  ENG  @0 G stars @5 38
C03 14  3  FRE  @0 Etoile K @5 39
C03 14  3  ENG  @0 K stars @5 39
C03 15  X  FRE  @0 Etoile brillante @5 40
C03 15  X  ENG  @0 Bright star @5 40
C03 15  X  SPA  @0 Estrella brillante @5 40
C03 16  X  FRE  @0 Magnitude stellaire @5 41
C03 16  X  ENG  @0 Stellar magnitude @5 41
C03 16  X  SPA  @0 Magnitud estelar @5 41
C03 17  3  FRE  @0 Etoile S @5 42
C03 17  3  ENG  @0 S stars @5 42
C03 18  3  FRE  @0 Etoile séquence principale @5 43
C03 18  3  ENG  @0 Main sequence stars @5 43
C03 19  3  FRE  @0 Transfert masse @5 44
C03 19  3  ENG  @0 Mass transfer @5 44
C03 20  X  FRE  @0 Lobe Roche @5 45
C03 20  X  ENG  @0 Roche lobe @5 45
C03 20  X  SPA  @0 Lóbulo Roche @5 45
C03 21  3  FRE  @0 Champ magnétique @5 46
C03 21  3  ENG  @0 Magnetic fields @5 46
C03 22  X  FRE  @0 Etoile IR @5 47
C03 22  X  ENG  @0 Infrared star @5 47
C03 22  X  SPA  @0 Estrella IR @5 47
C03 23  3  FRE  @0 Binaire RX @5 48
C03 23  3  ENG  @0 X-ray binary stars @5 48
C03 24  X  FRE  @0 Source RX binaire @5 49
C03 24  X  ENG  @0 Binary X ray source @5 49
C03 24  X  SPA  @0 Fuente RX binaria @5 49
C03 25  3  FRE  @0 Voie lactée @5 50
C03 25  3  ENG  @0 Milky Way @5 50
C03 26  3  FRE  @0 Source RX cosmique @5 90
C03 26  3  ENG  @0 Cosmic x-ray sources @5 90
N21       @1 295
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0455421 INIST
ET : GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy
AU : GOSLING (A. J.); BANDYOPADHYAY (R. M.); MILLER-JONES (J. C. A.); FARRELL (S. A.)
AF : Department of Astrophysics, University of Oxford, Keble Road/Oxford OX1 3RH/Royaume-Uni (1 aut.); Department of Astronomy, University of Florida/Gainesville, FL 32611/Etats-Unis (2 aut.); Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403/1098 SJ Amsterdam/Pays-Bas (3 aut.); School ofPEMS, UNSW@ADFA, Northcott Drive/Canberra, ACT 2600/Australie (4 aut.); Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche/31028 Toulouse/France (4 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2007; Vol. 380; No. 4; Pp. 1511-1520; Bibl. 1/2 p.
LA : Anglais
EA : Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M◦. for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 1011 G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.
CC : 001E03
FD : Spectrométrie IR; Photométrie IR; Pulsar; Cercle; Type spectral; Correction extinction; Bulbe galactique; Loi extinction; Couleur; Fonction masse; Spectrométrie émission; Accrétion; Etoile G; Etoile K; Etoile brillante; Magnitude stellaire; Etoile S; Etoile séquence principale; Transfert masse; Lobe Roche; Champ magnétique; Etoile IR; Binaire RX; Source RX binaire; Voie lactée; Source RX cosmique
ED : Infrared spectroscopy; Infrared photometry; Pulsars; Circle; Spectral type; Extinction correction; Galactic bulge; Extinction law; Color; Mass function; Emission spectroscopy; Accretion; G stars; K stars; Bright star; Stellar magnitude; S stars; Main sequence stars; Mass transfer; Roche lobe; Magnetic fields; Infrared star; X-ray binary stars; Binary X ray source; Milky Way; Cosmic x-ray sources
SD : Fotometría IR; Circulo; Tipo espectral; Corrección extinción; Bulbo galáctico; Ley extinción; Función masa; Estrella brillante; Magnitud estelar; Lóbulo Roche; Estrella IR; Fuente RX binaria
LO : INIST-2067.354000149805370170
ID : 07-0455421

Links to Exploration step

Pascal:07-0455421

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy</title>
<author>
<name sortKey="Gosling, A J" sort="Gosling, A J" uniqKey="Gosling A" first="A. J." last="Gosling">A. J. Gosling</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Astrophysics, University of Oxford, Keble Road</s1>
<s2>Oxford OX1 3RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bandyopadhyay, R M" sort="Bandyopadhyay, R M" uniqKey="Bandyopadhyay R" first="R. M." last="Bandyopadhyay">R. M. Bandyopadhyay</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy, University of Florida</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Miller Jones, J C A" sort="Miller Jones, J C A" uniqKey="Miller Jones J" first="J. C. A." last="Miller-Jones">J. C. A. Miller-Jones</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403</s1>
<s2>1098 SJ Amsterdam</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farrell, S A" sort="Farrell, S A" uniqKey="Farrell S" first="S. A." last="Farrell">S. A. Farrell</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School ofPEMS, UNSW@ADFA, Northcott Drive</s1>
<s2>Canberra, ACT 2600</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche</s1>
<s2>31028 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0455421</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0455421 INIST</idno>
<idno type="RBID">Pascal:07-0455421</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003958</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy</title>
<author>
<name sortKey="Gosling, A J" sort="Gosling, A J" uniqKey="Gosling A" first="A. J." last="Gosling">A. J. Gosling</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Astrophysics, University of Oxford, Keble Road</s1>
<s2>Oxford OX1 3RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bandyopadhyay, R M" sort="Bandyopadhyay, R M" uniqKey="Bandyopadhyay R" first="R. M." last="Bandyopadhyay">R. M. Bandyopadhyay</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy, University of Florida</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Miller Jones, J C A" sort="Miller Jones, J C A" uniqKey="Miller Jones J" first="J. C. A." last="Miller-Jones">J. C. A. Miller-Jones</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403</s1>
<s2>1098 SJ Amsterdam</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farrell, S A" sort="Farrell, S A" uniqKey="Farrell S" first="S. A." last="Farrell">S. A. Farrell</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School ofPEMS, UNSW@ADFA, Northcott Drive</s1>
<s2>Canberra, ACT 2600</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche</s1>
<s2>31028 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretion</term>
<term>Binary X ray source</term>
<term>Bright star</term>
<term>Circle</term>
<term>Color</term>
<term>Cosmic x-ray sources</term>
<term>Emission spectroscopy</term>
<term>Extinction correction</term>
<term>Extinction law</term>
<term>G stars</term>
<term>Galactic bulge</term>
<term>Infrared photometry</term>
<term>Infrared spectroscopy</term>
<term>Infrared star</term>
<term>K stars</term>
<term>Magnetic fields</term>
<term>Main sequence stars</term>
<term>Mass function</term>
<term>Mass transfer</term>
<term>Milky Way</term>
<term>Pulsars</term>
<term>Roche lobe</term>
<term>S stars</term>
<term>Spectral type</term>
<term>Stellar magnitude</term>
<term>X-ray binary stars</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectrométrie IR</term>
<term>Photométrie IR</term>
<term>Pulsar</term>
<term>Cercle</term>
<term>Type spectral</term>
<term>Correction extinction</term>
<term>Bulbe galactique</term>
<term>Loi extinction</term>
<term>Couleur</term>
<term>Fonction masse</term>
<term>Spectrométrie émission</term>
<term>Accrétion</term>
<term>Etoile G</term>
<term>Etoile K</term>
<term>Etoile brillante</term>
<term>Magnitude stellaire</term>
<term>Etoile S</term>
<term>Etoile séquence principale</term>
<term>Transfert masse</term>
<term>Lobe Roche</term>
<term>Champ magnétique</term>
<term>Etoile IR</term>
<term>Binaire RX</term>
<term>Source RX binaire</term>
<term>Voie lactée</term>
<term>Source RX cosmique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M
<sub>◦.</sub>
for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 10
<sup>11</sup>
G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>380</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GOSLING (A. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BANDYOPADHYAY (R. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MILLER-JONES (J. C. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FARRELL (S. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Astrophysics, University of Oxford, Keble Road</s1>
<s2>Oxford OX1 3RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Astronomy, University of Florida</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403</s1>
<s2>1098 SJ Amsterdam</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School ofPEMS, UNSW@ADFA, Northcott Drive</s1>
<s2>Canberra, ACT 2600</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche</s1>
<s2>31028 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1511-1520</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000149805370170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0455421</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M
<sub>◦.</sub>
for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 10
<sup>11</sup>
G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectrométrie IR</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Infrared spectroscopy</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Photométrie IR</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Infrared photometry</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fotometría IR</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Pulsar</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Pulsars</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cercle</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Circle</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Circulo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Type spectral</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spectral type</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tipo espectral</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Correction extinction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Extinction correction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Corrección extinción</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bulbe galactique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Galactic bulge</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Bulbo galáctico</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Loi extinction</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Extinction law</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ley extinción</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couleur</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Color</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Fonction masse</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mass function</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Función masa</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie émission</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Emission spectroscopy</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Accrétion</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Accretion</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etoile G</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>G stars</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Etoile K</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>K stars</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Etoile brillante</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Bright star</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estrella brillante</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Magnitude stellaire</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Stellar magnitude</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Magnitud estelar</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etoile S</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>S stars</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etoile séquence principale</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Main sequence stars</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Transfert masse</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Mass transfer</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Lobe Roche</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Roche lobe</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Lóbulo Roche</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Champ magnétique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Magnetic fields</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Etoile IR</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Infrared star</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estrella IR</s0>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Binaire RX</s0>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>X-ray binary stars</s0>
<s5>48</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Source RX binaire</s0>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Binary X ray source</s0>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Fuente RX binaria</s0>
<s5>49</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Voie lactée</s0>
<s5>50</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Milky Way</s0>
<s5>50</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Source RX cosmique</s0>
<s5>90</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Cosmic x-ray sources</s0>
<s5>90</s5>
</fC03>
<fN21>
<s1>295</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0455421 INIST</NO>
<ET>GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy</ET>
<AU>GOSLING (A. J.); BANDYOPADHYAY (R. M.); MILLER-JONES (J. C. A.); FARRELL (S. A.)</AU>
<AF>Department of Astrophysics, University of Oxford, Keble Road/Oxford OX1 3RH/Royaume-Uni (1 aut.); Department of Astronomy, University of Florida/Gainesville, FL 32611/Etats-Unis (2 aut.); Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403/1098 SJ Amsterdam/Pays-Bas (3 aut.); School ofPEMS, UNSW@ADFA, Northcott Drive/Canberra, ACT 2600/Australie (4 aut.); Centre d'Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche/31028 Toulouse/France (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2007; Vol. 380; No. 4; Pp. 1511-1520; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Using VLT/ISAAC, we have detected two candidate counterparts to the bursting pulsar GRO J1744-28, one bright and one faint, both within the X-ray error circles found using XMM-Newton and Chandra. In determining the spectral types of the counterparts we applied three different extinction corrections; one for an all-sky value, one for a Galactic bulge value and one for a local value. We find that the local value, with an extinction law of a = 3.23 ± 0.01 is the only correction that results in colours and magnitudes for both the bright and faint counterparts that are consistent with a small range of spectral types, and in the case of the bright counterpart are also consistent with the spectroscopic identification. Photometry of the fainter candidate then indicates that it is a K7/M0 V star at a distance of 3.75 ± 1 kpc. Such a star would require a very low inclination angle (i < 9°) to satisfy the mass function constraints; however, this source cannot be excluded as the counterpart without follow-up spectroscopy to detect emission signatures of accretion. Photometry and spectroscopy of the bright candidate indicate that it is most likely a G/K III star. The spectrum does not show Brackett-y emission, a known indicator of accretion. The bright star's magnitudes are in agreement with the constraints placed on the probable counterpart by the calculations of Rappaport & Joss for an evolved star that has had its envelope stripped. The mass function indicates that the most likely counterpart has M < 0.3 M
<sub>◦.</sub>
for an inclination of i ≥ 15°; a stripped giant, or a main-sequence M3+V star would be consistent with this mass function constraint. In both cases mass transfer, if present, will be by wind accretion as the counterpart will not fill its Roche lobe given the observed orbital period. In this case, the derived magnetic field strength of 2.4 x 10
<sup>11</sup>
G is sufficient to inhibit accretion of captured material by the propeller effect, hence the quiescent state of the system.</EA>
<CC>001E03</CC>
<FD>Spectrométrie IR; Photométrie IR; Pulsar; Cercle; Type spectral; Correction extinction; Bulbe galactique; Loi extinction; Couleur; Fonction masse; Spectrométrie émission; Accrétion; Etoile G; Etoile K; Etoile brillante; Magnitude stellaire; Etoile S; Etoile séquence principale; Transfert masse; Lobe Roche; Champ magnétique; Etoile IR; Binaire RX; Source RX binaire; Voie lactée; Source RX cosmique</FD>
<ED>Infrared spectroscopy; Infrared photometry; Pulsars; Circle; Spectral type; Extinction correction; Galactic bulge; Extinction law; Color; Mass function; Emission spectroscopy; Accretion; G stars; K stars; Bright star; Stellar magnitude; S stars; Main sequence stars; Mass transfer; Roche lobe; Magnetic fields; Infrared star; X-ray binary stars; Binary X ray source; Milky Way; Cosmic x-ray sources</ED>
<SD>Fotometría IR; Circulo; Tipo espectral; Corrección extinción; Bulbo galáctico; Ley extinción; Función masa; Estrella brillante; Magnitud estelar; Lóbulo Roche; Estrella IR; Fuente RX binaria</SD>
<LO>INIST-2067.354000149805370170</LO>
<ID>07-0455421</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0455421
   |texte=   GRO J1744-28, search for the counterpart : infrared photometry and spectroscopy
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024