Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Consistent closure schemes for statistical models of anisotropic fluids

Identifieur interne : 003540 ( PascalFrancis/Corpus ); précédent : 003539; suivant : 003541

Consistent closure schemes for statistical models of anisotropic fluids

Auteurs : Martin Kröger ; Amine Ammar ; Francisco Chinesta

Source :

RBID : Pascal:08-0281326

Descripteurs français

English descriptors

Abstract

We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions Sn(S2) in terms of a scalar argument S2, with Sn (0) = 0 and Sn (1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S4(S2) function. We propose using the simple model dependent convex shaped equilibrium relationship between S4 and S2 to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x TNI with the nematic-isotropic transition temperature TNI (or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0377-0257
A02 01      @0 JNFMDI
A03   1    @0 J. non-newton. fluid mech.
A05       @2 149
A06       @2 1-3
A08 01  1  ENG  @1 Consistent closure schemes for statistical models of anisotropic fluids
A09 01  1  ENG  @1 International Workshop on Mesoscale and Multiscale Description of Complex Fluids
A11 01  1    @1 KRÖGER (Martin)
A11 02  1    @1 AMMAR (Amine)
A11 03  1    @1 CHINESTA (Francisco)
A12 01  1    @1 SHAQFEH (Eric S. G.) @9 ed.
A12 02  1    @1 RAVI PRAKASH (Jagadeeshan) @9 ed.
A14 01      @1 Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10 @2 8093 Zürich @3 CHE @Z 1 aut.
A14 02      @1 Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire @2 38041 Grenoble @3 FRA @Z 2 aut.
A14 03      @1 LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital @2 75013 Paris @3 FRA @Z 3 aut.
A15 01      @1 Stanford University @3 USA @Z 1 aut.
A15 02      @1 Monash University @3 AUS @Z 2 aut.
A20       @1 40-55
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 17234 @5 354000161895090060
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 48 ref.
A47 01  1    @0 08-0281326
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of non-newtonian fluid mechanics
A66 01      @0 NLD
C01 01    ENG  @0 We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions Sn(S2) in terms of a scalar argument S2, with Sn (0) = 0 and Sn (1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S4(S2) function. We propose using the simple model dependent convex shaped equilibrium relationship between S4 and S2 to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x TNI with the nematic-isotropic transition temperature TNI (or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.
C02 01  3    @0 001B60A30
C03 01  3  FRE  @0 Ordre orientationnel @5 02
C03 01  3  ENG  @0 Orientational order @5 02
C03 02  3  FRE  @0 Fonction distribution @5 03
C03 02  3  ENG  @0 Distribution functions @5 03
C03 03  3  FRE  @0 Modèle mathématique @5 04
C03 03  3  ENG  @0 Mathematical models @5 04
C03 04  3  FRE  @0 Equation Fokker Planck @5 05
C03 04  3  ENG  @0 Fokker-Planck equation @5 05
C03 05  X  FRE  @0 Transformation liquide nématique @5 06
C03 05  X  ENG  @0 Liquid nematic transformation @5 06
C03 05  X  SPA  @0 Transformación líquido nemático @5 06
C03 06  X  FRE  @0 Fluide ferromagnétique @5 11
C03 06  X  ENG  @0 Ferromagnetic fluid @5 11
C03 06  X  SPA  @0 Fluido ferromagnético @5 11
C03 07  X  FRE  @0 Approximation rationnelle @5 12
C03 07  X  ENG  @0 Rational approximation @5 12
C03 07  X  SPA  @0 Aproximación racional @5 12
C03 08  X  FRE  @0 Modèle fermeture @5 13
C03 08  X  ENG  @0 Closure model @5 13
C03 08  X  SPA  @0 Modelo cierre @5 13
C03 09  3  FRE  @0 Cristal liquide @5 15
C03 09  3  ENG  @0 Liquid crystals @5 15
C03 10  3  FRE  @0 Cristal nématique @5 16
C03 10  3  ENG  @0 Nematic crystals @5 16
C03 11  X  FRE  @0 Fluide magnétorhéologique @5 17
C03 11  X  ENG  @0 Magnetorheological fluid @5 17
C03 11  X  SPA  @0 Fluido magnetoreologico @5 17
N21       @1 175
pR  
A30 01  1  ENG  @1 IWMMCOF'06 International Workshop on Mesoscale and Multiscale Description of Complex Fluids @3 Prato ITA @4 2006-07-05

Format Inist (serveur)

NO : PASCAL 08-0281326 INIST
ET : Consistent closure schemes for statistical models of anisotropic fluids
AU : KRÖGER (Martin); AMMAR (Amine); CHINESTA (Francisco); SHAQFEH (Eric S. G.); RAVI PRAKASH (Jagadeeshan)
AF : Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10/8093 Zürich/Suisse (1 aut.); Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire/38041 Grenoble/France (2 aut.); LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital/75013 Paris/France (3 aut.); Stanford University/Etats-Unis (1 aut.); Monash University/Australie (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of non-newtonian fluid mechanics; ISSN 0377-0257; Coden JNFMDI; Pays-Bas; Da. 2008; Vol. 149; No. 1-3; Pp. 40-55; Bibl. 48 ref.
LA : Anglais
EA : We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions Sn(S2) in terms of a scalar argument S2, with Sn (0) = 0 and Sn (1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S4(S2) function. We propose using the simple model dependent convex shaped equilibrium relationship between S4 and S2 to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x TNI with the nematic-isotropic transition temperature TNI (or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.
CC : 001B60A30
FD : Ordre orientationnel; Fonction distribution; Modèle mathématique; Equation Fokker Planck; Transformation liquide nématique; Fluide ferromagnétique; Approximation rationnelle; Modèle fermeture; Cristal liquide; Cristal nématique; Fluide magnétorhéologique
ED : Orientational order; Distribution functions; Mathematical models; Fokker-Planck equation; Liquid nematic transformation; Ferromagnetic fluid; Rational approximation; Closure model; Liquid crystals; Nematic crystals; Magnetorheological fluid
SD : Transformación líquido nemático; Fluido ferromagnético; Aproximación racional; Modelo cierre; Fluido magnetoreologico
LO : INIST-17234.354000161895090060
ID : 08-0281326

Links to Exploration step

Pascal:08-0281326

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Consistent closure schemes for statistical models of anisotropic fluids</title>
<author>
<name sortKey="Kroger, Martin" sort="Kroger, Martin" uniqKey="Kroger M" first="Martin" last="Kröger">Martin Kröger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10</s1>
<s2>8093 Zürich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ammar, Amine" sort="Ammar, Amine" uniqKey="Ammar A" first="Amine" last="Ammar">Amine Ammar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chinesta, Francisco" sort="Chinesta, Francisco" uniqKey="Chinesta F" first="Francisco" last="Chinesta">Francisco Chinesta</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital</s1>
<s2>75013 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0281326</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0281326 INIST</idno>
<idno type="RBID">Pascal:08-0281326</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003540</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Consistent closure schemes for statistical models of anisotropic fluids</title>
<author>
<name sortKey="Kroger, Martin" sort="Kroger, Martin" uniqKey="Kroger M" first="Martin" last="Kröger">Martin Kröger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10</s1>
<s2>8093 Zürich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ammar, Amine" sort="Ammar, Amine" uniqKey="Ammar A" first="Amine" last="Ammar">Amine Ammar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chinesta, Francisco" sort="Chinesta, Francisco" uniqKey="Chinesta F" first="Francisco" last="Chinesta">Francisco Chinesta</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital</s1>
<s2>75013 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of non-newtonian fluid mechanics</title>
<title level="j" type="abbreviated">J. non-newton. fluid mech.</title>
<idno type="ISSN">0377-0257</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of non-newtonian fluid mechanics</title>
<title level="j" type="abbreviated">J. non-newton. fluid mech.</title>
<idno type="ISSN">0377-0257</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Closure model</term>
<term>Distribution functions</term>
<term>Ferromagnetic fluid</term>
<term>Fokker-Planck equation</term>
<term>Liquid crystals</term>
<term>Liquid nematic transformation</term>
<term>Magnetorheological fluid</term>
<term>Mathematical models</term>
<term>Nematic crystals</term>
<term>Orientational order</term>
<term>Rational approximation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ordre orientationnel</term>
<term>Fonction distribution</term>
<term>Modèle mathématique</term>
<term>Equation Fokker Planck</term>
<term>Transformation liquide nématique</term>
<term>Fluide ferromagnétique</term>
<term>Approximation rationnelle</term>
<term>Modèle fermeture</term>
<term>Cristal liquide</term>
<term>Cristal nématique</term>
<term>Fluide magnétorhéologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions S
<sub>n</sub>
(S
<sub>2</sub>
) in terms of a scalar argument S
<sub>2</sub>
, with S
<sub>n</sub>
(0) = 0 and S
<sub>n</sub>
(1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S
<sub>4</sub>
(S
<sub>2</sub>
) function. We propose using the simple model dependent convex shaped equilibrium relationship between S
<sub>4</sub>
and S
<sub>2</sub>
to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x T
<sub>NI</sub>
with the nematic-isotropic transition temperature T
<sub>NI</sub>
(or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0377-0257</s0>
</fA01>
<fA02 i1="01">
<s0>JNFMDI</s0>
</fA02>
<fA03 i2="1">
<s0>J. non-newton. fluid mech.</s0>
</fA03>
<fA05>
<s2>149</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Consistent closure schemes for statistical models of anisotropic fluids</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>International Workshop on Mesoscale and Multiscale Description of Complex Fluids</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KRÖGER (Martin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AMMAR (Amine)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHINESTA (Francisco)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SHAQFEH (Eric S. G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RAVI PRAKASH (Jagadeeshan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10</s1>
<s2>8093 Zürich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital</s1>
<s2>75013 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Stanford University</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Monash University</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>40-55</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17234</s2>
<s5>354000161895090060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0281326</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of non-newtonian fluid mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions S
<sub>n</sub>
(S
<sub>2</sub>
) in terms of a scalar argument S
<sub>2</sub>
, with S
<sub>n</sub>
(0) = 0 and S
<sub>n</sub>
(1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S
<sub>4</sub>
(S
<sub>2</sub>
) function. We propose using the simple model dependent convex shaped equilibrium relationship between S
<sub>4</sub>
and S
<sub>2</sub>
to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x T
<sub>NI</sub>
with the nematic-isotropic transition temperature T
<sub>NI</sub>
(or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A30</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ordre orientationnel</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Orientational order</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Fonction distribution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Distribution functions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Modèle mathématique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Mathematical models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Equation Fokker Planck</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Fokker-Planck equation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transformation liquide nématique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Liquid nematic transformation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transformación líquido nemático</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Fluide ferromagnétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ferromagnetic fluid</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fluido ferromagnético</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Approximation rationnelle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Rational approximation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aproximación racional</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Modèle fermeture</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Closure model</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Modelo cierre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cristal liquide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Liquid crystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cristal nématique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nematic crystals</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fluide magnétorhéologique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Magnetorheological fluid</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fluido magnetoreologico</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IWMMCOF'06 International Workshop on Mesoscale and Multiscale Description of Complex Fluids</s1>
<s3>Prato ITA</s3>
<s4>2006-07-05</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 08-0281326 INIST</NO>
<ET>Consistent closure schemes for statistical models of anisotropic fluids</ET>
<AU>KRÖGER (Martin); AMMAR (Amine); CHINESTA (Francisco); SHAQFEH (Eric S. G.); RAVI PRAKASH (Jagadeeshan)</AU>
<AF>Polymer Physics, ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10/8093 Zürich/Suisse (1 aut.); Laboratoire de Rhéologie, UMR 5520 CNRS-UJF-INPG, 1301 Rue de la Piscine, BP 53 Domaine Universitaire/38041 Grenoble/France (2 aut.); LMSP UMR 8106 CNRS-ENSAM-ESEM, 151 Boulevard de l'Hôpital/75013 Paris/France (3 aut.); Stanford University/Etats-Unis (1 aut.); Monash University/Australie (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of non-newtonian fluid mechanics; ISSN 0377-0257; Coden JNFMDI; Pays-Bas; Da. 2008; Vol. 149; No. 1-3; Pp. 40-55; Bibl. 48 ref.</SO>
<LA>Anglais</LA>
<EA>We propose a rational approach to approximating the various alignment tensors. It preserves the correct symmetry and leads to consistent results. For the case of uniaxial nematic fluids, the decoupling approximation for a tensor of rank n involves (n - 2)/2 scalar functions S
<sub>n</sub>
(S
<sub>2</sub>
) in terms of a scalar argument S
<sub>2</sub>
, with S
<sub>n</sub>
(0) = 0 and S
<sub>n</sub>
(1) = 1. Nothing else can be concluded about the mathematical relationship between moments of the distribution function, and in particular, all consistent decoupling approximations for fourth-order moment in terms of second-order moments can be characterized by a single S
<sub>4</sub>
(S
<sub>2</sub>
) function. We propose using the simple model dependent convex shaped equilibrium relationship between S
<sub>4</sub>
and S
<sub>2</sub>
to characterize new (and simple) decoupling approximations K-I and K-II for the biaxial (including uniaxial) phase. In order to test the new against earlier proposed approximations rigorously, and to discuss consistency issues, we solve the Hess-Doi Fokker-Planck equation for nematic and nematic-discotic liquid crystals efficiently for a wide range of (2300 distinct) possible conditions including mixed shear and elongational flows, diverse field strengths, and molecular shapes. As a result, we confirm the closures K-I and K-II with correct tensorial symmetry; they are valid under arbitrary conditions to high precision, exact in the isotropic and totally aligned phases, improve upon earlier parameter-free closures in particular in the temperature regime T∈ [0.6, ∞] x T
<sub>NI</sub>
with the nematic-isotropic transition temperature T
<sub>NI</sub>
(or alternatively, for mean-field strengths U ∈ [0, 8]). K-II performs as good as the so-called Bingham closure, which usually requires 30 empirical coefficients, while K-I and K-II are essentially parameter-free, and their quality can be expected to be insensitive to the particular model.</EA>
<CC>001B60A30</CC>
<FD>Ordre orientationnel; Fonction distribution; Modèle mathématique; Equation Fokker Planck; Transformation liquide nématique; Fluide ferromagnétique; Approximation rationnelle; Modèle fermeture; Cristal liquide; Cristal nématique; Fluide magnétorhéologique</FD>
<ED>Orientational order; Distribution functions; Mathematical models; Fokker-Planck equation; Liquid nematic transformation; Ferromagnetic fluid; Rational approximation; Closure model; Liquid crystals; Nematic crystals; Magnetorheological fluid</ED>
<SD>Transformación líquido nemático; Fluido ferromagnético; Aproximación racional; Modelo cierre; Fluido magnetoreologico</SD>
<LO>INIST-17234.354000161895090060</LO>
<ID>08-0281326</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003540 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003540 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0281326
   |texte=   Consistent closure schemes for statistical models of anisotropic fluids
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024