Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Entangling the Spatial Properties of Laser Beams

Identifieur interne : 003189 ( PascalFrancis/Corpus ); précédent : 003188; suivant : 003190

Entangling the Spatial Properties of Laser Beams

Auteurs : Katherine Wagner ; Jiri Janousek ; Vincent Delaubert ; HONGXIN ZOU ; Charles Harb ; Nicolas Treps ; Jean Francois Morizur ; PING KOY LAM ; Hans A. Bachor

Source :

RBID : Pascal:08-0527220

Descripteurs français

English descriptors

Abstract

Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0036-8075
A02 01      @0 SCIEAS
A03   1    @0 Science : (Wash. D.C.)
A05       @2 321
A06       @2 5888
A08 01  1  ENG  @1 Entangling the Spatial Properties of Laser Beams
A11 01  1    @1 WAGNER (Katherine)
A11 02  1    @1 JANOUSEK (Jiri)
A11 03  1    @1 DELAUBERT (Vincent)
A11 04  1    @1 HONGXIN ZOU
A11 05  1    @1 HARB (Charles)
A11 06  1    @1 TREPS (Nicolas)
A11 07  1    @1 FRANCOIS MORIZUR (Jean)
A11 08  1    @1 PING KOY LAM
A11 09  1    @1 BACHOR (Hans A.)
A14 01      @1 Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University @2 Canberra ACT 0200 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut.
A14 02      @1 Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu @2 75252 Paris @3 FRA @Z 3 aut. @Z 6 aut. @Z 7 aut.
A14 03      @1 Australian Defence Force Academy @2 Canberra @3 AUS @Z 5 aut.
A20       @1 541-543
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 6040 @5 354000196446090200
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A47 01  1    @0 08-0527220
A60       @1 P @3 C
A61       @0 A
A64 01  1    @0 Science : (Washington, D.C.)
A66 01      @0 USA
A99       @0 1/4 p. ref. et notes
C01 01    ENG  @0 Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.
C02 01  3    @0 001B40B50
C03 01  3  FRE  @0 Intrication quantique @5 03
C03 01  3  ENG  @0 Quantum entanglement @5 03
C03 02  3  FRE  @0 Mécanique quantique @5 19
C03 02  3  ENG  @0 Quantum mechanics @5 19
C03 03  3  FRE  @0 Optique quantique @5 20
C03 03  3  ENG  @0 Quantum optics @5 20
C03 04  3  FRE  @0 Principe incertitude @5 23
C03 04  3  ENG  @0 Uncertainty principle @5 23
C03 05  3  FRE  @0 Méthode mesure @5 30
C03 05  3  ENG  @0 Measuring methods @5 30
C03 06  X  FRE  @0 Méthode optique @5 31
C03 06  X  ENG  @0 Optical method @5 31
C03 06  X  SPA  @0 Método óptico @5 31
C03 07  3  FRE  @0 Faisceau laser @5 37
C03 07  3  ENG  @0 Laser beams @5 37
C03 08  X  FRE  @0 Faisceau optique @5 38
C03 08  X  ENG  @0 Optical beam @5 38
C03 08  X  SPA  @0 Haz óptico @5 38
C03 09  3  FRE  @0 Quantité mouvement @5 41
C03 09  3  ENG  @0 Momentum @5 41
C03 10  3  FRE  @0 4250 @4 INC @5 83
N21       @1 343

Format Inist (serveur)

NO : PASCAL 08-0527220 INIST
ET : Entangling the Spatial Properties of Laser Beams
AU : WAGNER (Katherine); JANOUSEK (Jiri); DELAUBERT (Vincent); HONGXIN ZOU; HARB (Charles); TREPS (Nicolas); FRANCOIS MORIZUR (Jean); PING KOY LAM; BACHOR (Hans A.)
AF : Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University/Canberra ACT 0200/Australie (1 aut., 2 aut., 3 aut., 4 aut., 7 aut., 8 aut., 9 aut.); Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu/75252 Paris/France (3 aut., 6 aut., 7 aut.); Australian Defence Force Academy/Canberra/Australie (5 aut.)
DT : Publication en série; Compte-rendu; Niveau analytique
SO : Science : (Washington, D.C.); ISSN 0036-8075; Coden SCIEAS; Etats-Unis; Da. 2008; Vol. 321; No. 5888; Pp. 541-543
LA : Anglais
EA : Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.
CC : 001B40B50
FD : Intrication quantique; Mécanique quantique; Optique quantique; Principe incertitude; Méthode mesure; Méthode optique; Faisceau laser; Faisceau optique; Quantité mouvement; 4250
ED : Quantum entanglement; Quantum mechanics; Quantum optics; Uncertainty principle; Measuring methods; Optical method; Laser beams; Optical beam; Momentum
SD : Método óptico; Haz óptico
LO : INIST-6040.354000196446090200
ID : 08-0527220

Links to Exploration step

Pascal:08-0527220

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Entangling the Spatial Properties of Laser Beams</title>
<author>
<name sortKey="Wagner, Katherine" sort="Wagner, Katherine" uniqKey="Wagner K" first="Katherine" last="Wagner">Katherine Wagner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Janousek, Jiri" sort="Janousek, Jiri" uniqKey="Janousek J" first="Jiri" last="Janousek">Jiri Janousek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delaubert, Vincent" sort="Delaubert, Vincent" uniqKey="Delaubert V" first="Vincent" last="Delaubert">Vincent Delaubert</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hongxin Zou" sort="Hongxin Zou" uniqKey="Hongxin Zou" last="Hongxin Zou">HONGXIN ZOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harb, Charles" sort="Harb, Charles" uniqKey="Harb C" first="Charles" last="Harb">Charles Harb</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Australian Defence Force Academy</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Treps, Nicolas" sort="Treps, Nicolas" uniqKey="Treps N" first="Nicolas" last="Treps">Nicolas Treps</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Francois Morizur, Jean" sort="Francois Morizur, Jean" uniqKey="Francois Morizur J" first="Jean" last="Francois Morizur">Jean Francois Morizur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ping Koy Lam" sort="Ping Koy Lam" uniqKey="Ping Koy Lam" last="Ping Koy Lam">PING KOY LAM</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bachor, Hans A" sort="Bachor, Hans A" uniqKey="Bachor H" first="Hans A." last="Bachor">Hans A. Bachor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0527220</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0527220 INIST</idno>
<idno type="RBID">Pascal:08-0527220</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Entangling the Spatial Properties of Laser Beams</title>
<author>
<name sortKey="Wagner, Katherine" sort="Wagner, Katherine" uniqKey="Wagner K" first="Katherine" last="Wagner">Katherine Wagner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Janousek, Jiri" sort="Janousek, Jiri" uniqKey="Janousek J" first="Jiri" last="Janousek">Jiri Janousek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delaubert, Vincent" sort="Delaubert, Vincent" uniqKey="Delaubert V" first="Vincent" last="Delaubert">Vincent Delaubert</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hongxin Zou" sort="Hongxin Zou" uniqKey="Hongxin Zou" last="Hongxin Zou">HONGXIN ZOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harb, Charles" sort="Harb, Charles" uniqKey="Harb C" first="Charles" last="Harb">Charles Harb</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Australian Defence Force Academy</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Treps, Nicolas" sort="Treps, Nicolas" uniqKey="Treps N" first="Nicolas" last="Treps">Nicolas Treps</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Francois Morizur, Jean" sort="Francois Morizur, Jean" uniqKey="Francois Morizur J" first="Jean" last="Francois Morizur">Jean Francois Morizur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ping Koy Lam" sort="Ping Koy Lam" uniqKey="Ping Koy Lam" last="Ping Koy Lam">PING KOY LAM</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bachor, Hans A" sort="Bachor, Hans A" uniqKey="Bachor H" first="Hans A." last="Bachor">Hans A. Bachor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Science : (Washington, D.C.)</title>
<title level="j" type="abbreviated">Science : (Wash. D.C.)</title>
<idno type="ISSN">0036-8075</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Science : (Washington, D.C.)</title>
<title level="j" type="abbreviated">Science : (Wash. D.C.)</title>
<idno type="ISSN">0036-8075</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Laser beams</term>
<term>Measuring methods</term>
<term>Momentum</term>
<term>Optical beam</term>
<term>Optical method</term>
<term>Quantum entanglement</term>
<term>Quantum mechanics</term>
<term>Quantum optics</term>
<term>Uncertainty principle</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Intrication quantique</term>
<term>Mécanique quantique</term>
<term>Optique quantique</term>
<term>Principe incertitude</term>
<term>Méthode mesure</term>
<term>Méthode optique</term>
<term>Faisceau laser</term>
<term>Faisceau optique</term>
<term>Quantité mouvement</term>
<term>4250</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0036-8075</s0>
</fA01>
<fA02 i1="01">
<s0>SCIEAS</s0>
</fA02>
<fA03 i2="1">
<s0>Science : (Wash. D.C.)</s0>
</fA03>
<fA05>
<s2>321</s2>
</fA05>
<fA06>
<s2>5888</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Entangling the Spatial Properties of Laser Beams</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WAGNER (Katherine)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JANOUSEK (Jiri)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DELAUBERT (Vincent)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HONGXIN ZOU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HARB (Charles)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TREPS (Nicolas)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FRANCOIS MORIZUR (Jean)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PING KOY LAM</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BACHOR (Hans A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Australian Defence Force Academy</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>541-543</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6040</s2>
<s5>354000196446090200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>08-0527220</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>C</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Science : (Washington, D.C.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>1/4 p. ref. et notes</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B50</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Intrication quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum entanglement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mécanique quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantum mechanics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Optique quantique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum optics</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Principe incertitude</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Uncertainty principle</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode mesure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Measuring methods</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode optique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método óptico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Faisceau laser</s0>
<s5>37</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Laser beams</s0>
<s5>37</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Faisceau optique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optical beam</s0>
<s5>38</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Haz óptico</s0>
<s5>38</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Quantité mouvement</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Momentum</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4250</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 08-0527220 INIST</NO>
<ET>Entangling the Spatial Properties of Laser Beams</ET>
<AU>WAGNER (Katherine); JANOUSEK (Jiri); DELAUBERT (Vincent); HONGXIN ZOU; HARB (Charles); TREPS (Nicolas); FRANCOIS MORIZUR (Jean); PING KOY LAM; BACHOR (Hans A.)</AU>
<AF>Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University/Canberra ACT 0200/Australie (1 aut., 2 aut., 3 aut., 4 aut., 7 aut., 8 aut., 9 aut.); Laboratoire Kastler Brossel, Université Pierre et Marie Curie-Paris 6, ENS, CNRS; 4 place jussieu/75252 Paris/France (3 aut., 6 aut., 7 aut.); Australian Defence Force Academy/Canberra/Australie (5 aut.)</AF>
<DT>Publication en série; Compte-rendu; Niveau analytique</DT>
<SO>Science : (Washington, D.C.); ISSN 0036-8075; Coden SCIEAS; Etats-Unis; Da. 2008; Vol. 321; No. 5888; Pp. 541-543</SO>
<LA>Anglais</LA>
<EA>Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available.</EA>
<CC>001B40B50</CC>
<FD>Intrication quantique; Mécanique quantique; Optique quantique; Principe incertitude; Méthode mesure; Méthode optique; Faisceau laser; Faisceau optique; Quantité mouvement; 4250</FD>
<ED>Quantum entanglement; Quantum mechanics; Quantum optics; Uncertainty principle; Measuring methods; Optical method; Laser beams; Optical beam; Momentum</ED>
<SD>Método óptico; Haz óptico</SD>
<LO>INIST-6040.354000196446090200</LO>
<ID>08-0527220</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 003189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0527220
   |texte=   Entangling the Spatial Properties of Laser Beams
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024