Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unsteady flow around impacting bluff bodies

Identifieur interne : 002F45 ( PascalFrancis/Corpus ); précédent : 002F44; suivant : 002F46

Unsteady flow around impacting bluff bodies

Auteurs : T. Leweke ; L. Schouveiler ; M. C. Thompson ; K. Hourigan

Source :

RBID : Pascal:09-0137568

Descripteurs français

English descriptors

Abstract

The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0889-9746
A02 01      @0 JFSTEF
A03   1    @0 J. fluids struct.
A05       @2 24
A06       @2 8
A08 01  1  ENG  @1 Unsteady flow around impacting bluff bodies
A09 01  1  ENG  @1 Unsteady Separated Flows and their Control
A11 01  1    @1 LEWEKE (T.)
A11 02  1    @1 SCHOUVEILER (L.)
A11 03  1    @1 THOMPSON (M. C.)
A11 04  1    @1 HOURIGAN (K.)
A12 01  1    @1 BRAZA (Marianna) @9 ed.
A12 02  1    @1 HOURIGAN (Kerry) @9 ed.
A14 01      @1 Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146 @2 13384 Marseille @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University @2 Victoria 3800 @3 AUS @Z 3 aut. @Z 4 aut.
A14 03      @1 Division of Biological Engineering, Monash University @2 Victoria 3800 @3 AUS @Z 4 aut.
A15 01      @1 Institut de Mécanique des Fluides, UMR-CNRS-No 5502, Allée du Prof. Camille Soula @2 31400 Toulouse @3 FRA @Z 1 aut.
A15 02      @1 FLAIR, Department of Mechanical and Aerospace Engineering, Division of Biological Engineering, Monash University, Clayton Campus @2 Victoria 3800 @3 AUS @Z 2 aut.
A18 01  1    @1 Union Internationale de Mécanique Théorique et Appliquée @3 INT @9 org-cong.
A20       @1 1194-1203
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 21394 @5 354000184587870050
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 09-0137568
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of fluids and structures
A66 01      @0 GBR
C01 01    ENG  @0 The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.
C02 01  3    @0 001B40G32
C02 02  3    @0 001B40G27
C03 01  3  FRE  @0 Ecoulement instationnaire @5 06
C03 01  3  ENG  @0 Unsteady flow @5 06
C03 02  X  FRE  @0 Rebond @5 07
C03 02  X  ENG  @0 Rebound @5 07
C03 02  X  SPA  @0 Rebote @5 07
C03 03  X  FRE  @0 Incidence normale @5 08
C03 03  X  ENG  @0 Normal incidence @5 08
C03 03  X  SPA  @0 Incidencia normal @5 08
C03 04  X  FRE  @0 Paire tourbillon @5 09
C03 04  X  ENG  @0 Vortex pair @5 09
C03 04  X  SPA  @0 Par vorticial @5 09
C03 05  3  FRE  @0 Effet paroi @5 10
C03 05  3  ENG  @0 Wall effects @5 10
C03 06  3  FRE  @0 Vorticité @5 11
C03 06  3  ENG  @0 Vorticity @5 11
C03 07  3  FRE  @0 Ecoulement tourbillonnaire @5 12
C03 07  3  ENG  @0 Vortex flow @5 12
C03 08  3  FRE  @0 Nombre Reynolds @5 13
C03 08  3  ENG  @0 Reynolds number @5 13
C03 09  X  FRE  @0 Etirement @5 14
C03 09  X  ENG  @0 Stretching @5 14
C03 09  X  SPA  @0 Estiramiento @5 14
C03 10  X  FRE  @0 Corps arête vive @5 15
C03 10  X  ENG  @0 Bluff body @5 15
C03 10  X  SPA  @0 Cuerpo arista viva @5 15
C03 11  3  FRE  @0 Fluide visqueux @5 16
C03 11  3  ENG  @0 Viscous fluids @5 16
C03 12  X  FRE  @0 Cylindre circulaire @5 17
C03 12  X  ENG  @0 Circular cylinder @5 17
C03 12  X  SPA  @0 Cilindro circular @5 17
C03 13  3  FRE  @0 Sphère @5 18
C03 13  3  ENG  @0 Spheres @5 18
C03 14  3  FRE  @0 Symétrie axiale @5 19
C03 14  3  ENG  @0 Axial symmetry @5 19
C03 15  3  FRE  @0 Longueur onde @5 20
C03 15  3  ENG  @0 Wavelengths @5 20
C03 16  X  FRE  @0 Structure turbulence @5 21
C03 16  X  ENG  @0 Turbulence structure @5 21
C03 16  X  SPA  @0 Estructura turbulencia @5 21
C03 17  X  FRE  @0 Ecoulement bidimensionnel @5 22
C03 17  X  ENG  @0 Two dimensional flow @5 22
C03 17  X  SPA  @0 Flujo bidimensional @5 22
C03 18  X  FRE  @0 Incidence oblique @5 41
C03 18  X  ENG  @0 Oblique incidence @5 41
C03 18  X  SPA  @0 Incidencia oblicua @5 41
N21       @1 096
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 IUTAM symposium on Unsteady Separated Flows and their control @2 2 @3 Corfu GRC @4 2007-06-18

Format Inist (serveur)

NO : PASCAL 09-0137568 INIST
ET : Unsteady flow around impacting bluff bodies
AU : LEWEKE (T.); SCHOUVEILER (L.); THOMPSON (M. C.); HOURIGAN (K.); BRAZA (Marianna); HOURIGAN (Kerry)
AF : Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146/13384 Marseille/France (1 aut., 2 aut.); Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University/Victoria 3800/Australie (3 aut., 4 aut.); Division of Biological Engineering, Monash University/Victoria 3800/Australie (4 aut.); Institut de Mécanique des Fluides, UMR-CNRS-No 5502, Allée du Prof. Camille Soula/31400 Toulouse/France (1 aut.); FLAIR, Department of Mechanical and Aerospace Engineering, Division of Biological Engineering, Monash University, Clayton Campus/Victoria 3800/Australie (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2008; Vol. 24; No. 8; Pp. 1194-1203; Bibl. 1/2 p.
LA : Anglais
EA : The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.
CC : 001B40G32; 001B40G27
FD : Ecoulement instationnaire; Rebond; Incidence normale; Paire tourbillon; Effet paroi; Vorticité; Ecoulement tourbillonnaire; Nombre Reynolds; Etirement; Corps arête vive; Fluide visqueux; Cylindre circulaire; Sphère; Symétrie axiale; Longueur onde; Structure turbulence; Ecoulement bidimensionnel; Incidence oblique
ED : Unsteady flow; Rebound; Normal incidence; Vortex pair; Wall effects; Vorticity; Vortex flow; Reynolds number; Stretching; Bluff body; Viscous fluids; Circular cylinder; Spheres; Axial symmetry; Wavelengths; Turbulence structure; Two dimensional flow; Oblique incidence
SD : Rebote; Incidencia normal; Par vorticial; Estiramiento; Cuerpo arista viva; Cilindro circular; Estructura turbulencia; Flujo bidimensional; Incidencia oblicua
LO : INIST-21394.354000184587870050
ID : 09-0137568

Links to Exploration step

Pascal:09-0137568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Unsteady flow around impacting bluff bodies</title>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schouveiler, L" sort="Schouveiler, L" uniqKey="Schouveiler L" first="L." last="Schouveiler">L. Schouveiler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0137568</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0137568 INIST</idno>
<idno type="RBID">Pascal:09-0137568</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002F45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Unsteady flow around impacting bluff bodies</title>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schouveiler, L" sort="Schouveiler, L" uniqKey="Schouveiler L" first="L." last="Schouveiler">L. Schouveiler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Axial symmetry</term>
<term>Bluff body</term>
<term>Circular cylinder</term>
<term>Normal incidence</term>
<term>Oblique incidence</term>
<term>Rebound</term>
<term>Reynolds number</term>
<term>Spheres</term>
<term>Stretching</term>
<term>Turbulence structure</term>
<term>Two dimensional flow</term>
<term>Unsteady flow</term>
<term>Viscous fluids</term>
<term>Vortex flow</term>
<term>Vortex pair</term>
<term>Vorticity</term>
<term>Wall effects</term>
<term>Wavelengths</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement instationnaire</term>
<term>Rebond</term>
<term>Incidence normale</term>
<term>Paire tourbillon</term>
<term>Effet paroi</term>
<term>Vorticité</term>
<term>Ecoulement tourbillonnaire</term>
<term>Nombre Reynolds</term>
<term>Etirement</term>
<term>Corps arête vive</term>
<term>Fluide visqueux</term>
<term>Cylindre circulaire</term>
<term>Sphère</term>
<term>Symétrie axiale</term>
<term>Longueur onde</term>
<term>Structure turbulence</term>
<term>Ecoulement bidimensionnel</term>
<term>Incidence oblique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0889-9746</s0>
</fA01>
<fA02 i1="01">
<s0>JFSTEF</s0>
</fA02>
<fA03 i2="1">
<s0>J. fluids struct.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Unsteady flow around impacting bluff bodies</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Unsteady Separated Flows and their Control</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LEWEKE (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHOUVEILER (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>THOMPSON (M. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOURIGAN (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BRAZA (Marianna)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HOURIGAN (Kerry)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institut de Mécanique des Fluides, UMR-CNRS-No 5502, Allée du Prof. Camille Soula</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>FLAIR, Department of Mechanical and Aerospace Engineering, Division of Biological Engineering, Monash University, Clayton Campus</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Union Internationale de Mécanique Théorique et Appliquée</s1>
<s3>INT</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>1194-1203</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21394</s2>
<s5>354000184587870050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0137568</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of fluids and structures</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G32</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G27</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ecoulement instationnaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Unsteady flow</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rebond</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Rebound</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Rebote</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Incidence normale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Normal incidence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Incidencia normal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Paire tourbillon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Vortex pair</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Par vorticial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet paroi</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Wall effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Vorticité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vorticity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nombre Reynolds</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Reynolds number</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etirement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Stretching</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estiramiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Corps arête vive</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Bluff body</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cuerpo arista viva</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Fluide visqueux</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Viscous fluids</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cylindre circulaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Circular cylinder</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cilindro circular</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Sphère</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Spheres</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Symétrie axiale</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Axial symmetry</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Longueur onde</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Wavelengths</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Structure turbulence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Turbulence structure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estructura turbulencia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Ecoulement bidimensionnel</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Two dimensional flow</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Flujo bidimensional</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Incidence oblique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Oblique incidence</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Incidencia oblicua</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>096</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IUTAM symposium on Unsteady Separated Flows and their control</s1>
<s2>2</s2>
<s3>Corfu GRC</s3>
<s4>2007-06-18</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 09-0137568 INIST</NO>
<ET>Unsteady flow around impacting bluff bodies</ET>
<AU>LEWEKE (T.); SCHOUVEILER (L.); THOMPSON (M. C.); HOURIGAN (K.); BRAZA (Marianna); HOURIGAN (Kerry)</AU>
<AF>Institut de Recherche sur les Phénomènes Hors Équilibre ¯ CNRS, École Centrale, Aix-Marseille Université, 49 rue Frédéric Joliot-Curie, B.P. 146/13384 Marseille/France (1 aut., 2 aut.); Fluids Laboratory for Aeronautical and Industrial Research, Department of Mechanical and Aerospace Engineering, Monash University/Victoria 3800/Australie (3 aut., 4 aut.); Division of Biological Engineering, Monash University/Victoria 3800/Australie (4 aut.); Institut de Mécanique des Fluides, UMR-CNRS-No 5502, Allée du Prof. Camille Soula/31400 Toulouse/France (1 aut.); FLAIR, Department of Mechanical and Aerospace Engineering, Division of Biological Engineering, Monash University, Clayton Campus/Victoria 3800/Australie (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2008; Vol. 24; No. 8; Pp. 1194-1203; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.</EA>
<CC>001B40G32; 001B40G27</CC>
<FD>Ecoulement instationnaire; Rebond; Incidence normale; Paire tourbillon; Effet paroi; Vorticité; Ecoulement tourbillonnaire; Nombre Reynolds; Etirement; Corps arête vive; Fluide visqueux; Cylindre circulaire; Sphère; Symétrie axiale; Longueur onde; Structure turbulence; Ecoulement bidimensionnel; Incidence oblique</FD>
<ED>Unsteady flow; Rebound; Normal incidence; Vortex pair; Wall effects; Vorticity; Vortex flow; Reynolds number; Stretching; Bluff body; Viscous fluids; Circular cylinder; Spheres; Axial symmetry; Wavelengths; Turbulence structure; Two dimensional flow; Oblique incidence</ED>
<SD>Rebote; Incidencia normal; Par vorticial; Estiramiento; Cuerpo arista viva; Cilindro circular; Estructura turbulencia; Flujo bidimensional; Incidencia oblicua</SD>
<LO>INIST-21394.354000184587870050</LO>
<ID>09-0137568</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002F45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0137568
   |texte=   Unsteady flow around impacting bluff bodies
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024