Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system

Identifieur interne : 002F16 ( PascalFrancis/Corpus ); précédent : 002F15; suivant : 002F17

Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system

Auteurs : A. Caillard ; C. Charles ; D. Ramdutt ; R. Boswell ; P. Brault

Source :

RBID : Pascal:09-0143225

Descripteurs français

English descriptors

Abstract

A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm-2 for an electrode previously covered with 0.1 mgPt cm-2 using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mgPt cm-2, the optimized Nafion® loading is 2 mg cm-2. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm-2 and maximum power density of 425 mW cm-2) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mgPt cm-2 leads to the same performance as that of the reference MEA at low current density (<500 mA cm-2) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g-1Pt versus 0.85 kW g-1Pt). For plasma prepared cathodes with 0.1 mgPtcm-2, the cathodic Pt utilization efficiency is 2.7 kW g-1Pt, which is 3 times higher than that obtained in the commercial cathode.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-3727
A02 01      @0 JPAPBE
A03   1    @0 J. phys., D. Appl. phys. : (Print)
A05       @2 42
A06       @2 4
A08 01  1  ENG  @1 Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system
A11 01  1    @1 CAILLARD (A.)
A11 02  1    @1 CHARLES (C.)
A11 03  1    @1 RAMDUTT (D.)
A11 04  1    @1 BOSWELL (R.)
A11 05  1    @1 BRAULT (P.)
A14 01      @1 Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University @2 Canberra, ACT 0200 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744 @2 45067 Orléans @3 FRA @Z 5 aut.
A20       @2 045207.1-045207.9
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 5841 @5 354000186910490360
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 43 ref.
A47 01  1    @0 09-0143225
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. D, Applied physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm-2 for an electrode previously covered with 0.1 mgPt cm-2 using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mgPt cm-2, the optimized Nafion® loading is 2 mg cm-2. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm-2 and maximum power density of 425 mW cm-2) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mgPt cm-2 leads to the same performance as that of the reference MEA at low current density (<500 mA cm-2) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g-1Pt versus 0.85 kW g-1Pt). For plasma prepared cathodes with 0.1 mgPtcm-2, the cathodic Pt utilization efficiency is 2.7 kW g-1Pt, which is 3 times higher than that obtained in the commercial cathode.
C02 01  3    @0 001B50B25F
C03 01  3  FRE  @0 Pulvérisation irradiation @5 03
C03 01  3  ENG  @0 Sputtering @5 03
C03 02  3  FRE  @0 Diffusion(transport) @5 04
C03 02  3  ENG  @0 Diffusion @5 04
C03 03  3  FRE  @0 Phénomène transport plasma @5 05
C03 03  3  ENG  @0 Plasma transport processes @5 05
C03 04  3  FRE  @0 Hélicon @5 11
C03 04  3  ENG  @0 Helicons @5 11
C03 05  3  FRE  @0 Puissance volumique @5 41
C03 05  3  ENG  @0 Power density @5 41
C03 06  3  FRE  @0 Densité courant @5 42
C03 06  3  ENG  @0 Current density @5 42
C03 07  3  FRE  @0 Proton @5 57
C03 07  3  ENG  @0 Protons @5 57
C03 08  3  FRE  @0 Carbone @2 NC @5 61
C03 08  3  ENG  @0 Carbon @2 NC @5 61
C03 09  3  FRE  @0 Hydrogène @2 NC @5 62
C03 09  3  ENG  @0 Hydrogen @2 NC @5 62
C03 10  3  FRE  @0 Oxygène @2 NC @5 63
C03 10  3  ENG  @0 Oxygen @2 NC @5 63
C03 11  X  FRE  @0 Courant faible @5 64
C03 11  X  ENG  @0 Low current @5 64
C03 11  X  SPA  @0 Corriente débil @5 64
C03 12  3  FRE  @0 5225F @4 INC @5 91
N21       @1 103
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0143225 INIST
ET : Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system
AU : CAILLARD (A.); CHARLES (C.); RAMDUTT (D.); BOSWELL (R.); BRAULT (P.)
AF : Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University/Canberra, ACT 0200/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744/45067 Orléans/France (5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2009; Vol. 42; No. 4; 045207.1-045207.9; Bibl. 43 ref.
LA : Anglais
EA : A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm-2 for an electrode previously covered with 0.1 mgPt cm-2 using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mgPt cm-2, the optimized Nafion® loading is 2 mg cm-2. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm-2 and maximum power density of 425 mW cm-2) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mgPt cm-2 leads to the same performance as that of the reference MEA at low current density (<500 mA cm-2) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g-1Pt versus 0.85 kW g-1Pt). For plasma prepared cathodes with 0.1 mgPtcm-2, the cathodic Pt utilization efficiency is 2.7 kW g-1Pt, which is 3 times higher than that obtained in the commercial cathode.
CC : 001B50B25F
FD : Pulvérisation irradiation; Diffusion(transport); Phénomène transport plasma; Hélicon; Puissance volumique; Densité courant; Proton; Carbone; Hydrogène; Oxygène; Courant faible; 5225F
ED : Sputtering; Diffusion; Plasma transport processes; Helicons; Power density; Current density; Protons; Carbon; Hydrogen; Oxygen; Low current
SD : Corriente débil
LO : INIST-5841.354000186910490360
ID : 09-0143225

Links to Exploration step

Pascal:09-0143225

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system</title>
<author>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A." last="Caillard">A. Caillard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C." last="Charles">C. Charles</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramdutt, D" sort="Ramdutt, D" uniqKey="Ramdutt D" first="D." last="Ramdutt">D. Ramdutt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R." last="Boswell">R. Boswell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P." last="Brault">P. Brault</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744</s1>
<s2>45067 Orléans</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0143225</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0143225 INIST</idno>
<idno type="RBID">Pascal:09-0143225</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002F16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system</title>
<author>
<name sortKey="Caillard, A" sort="Caillard, A" uniqKey="Caillard A" first="A." last="Caillard">A. Caillard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Charles, C" sort="Charles, C" uniqKey="Charles C" first="C." last="Charles">C. Charles</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramdutt, D" sort="Ramdutt, D" uniqKey="Ramdutt D" first="D." last="Ramdutt">D. Ramdutt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Boswell, R" sort="Boswell, R" uniqKey="Boswell R" first="R." last="Boswell">R. Boswell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brault, P" sort="Brault, P" uniqKey="Brault P" first="P." last="Brault">P. Brault</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744</s1>
<s2>45067 Orléans</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon</term>
<term>Current density</term>
<term>Diffusion</term>
<term>Helicons</term>
<term>Hydrogen</term>
<term>Low current</term>
<term>Oxygen</term>
<term>Plasma transport processes</term>
<term>Power density</term>
<term>Protons</term>
<term>Sputtering</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pulvérisation irradiation</term>
<term>Diffusion(transport)</term>
<term>Phénomène transport plasma</term>
<term>Hélicon</term>
<term>Puissance volumique</term>
<term>Densité courant</term>
<term>Proton</term>
<term>Carbone</term>
<term>Hydrogène</term>
<term>Oxygène</term>
<term>Courant faible</term>
<term>5225F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm
<sup>-2</sup>
for an electrode previously covered with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the optimized Nafion® loading is 2 mg cm
<sup>-2</sup>
. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm
<sup>-2</sup>
and maximum power density of 425 mW cm
<sup>-2</sup>
) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
leads to the same performance as that of the reference MEA at low current density (<500 mA cm
<sup>-2</sup>
) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g
<sup>-1</sup>
<sub>Pt</sub>
versus 0.85 kW g
<sup>-1</sup>
<sub>Pt</sub>
). For plasma prepared cathodes with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the cathodic Pt utilization efficiency is 2.7 kW g
<sup>-1</sup>
<sub>Pt</sub>
, which is 3 times higher than that obtained in the commercial cathode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CAILLARD (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHARLES (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAMDUTT (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOSWELL (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRAULT (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744</s1>
<s2>45067 Orléans</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>045207.1-045207.9</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000186910490360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0143225</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm
<sup>-2</sup>
for an electrode previously covered with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the optimized Nafion® loading is 2 mg cm
<sup>-2</sup>
. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm
<sup>-2</sup>
and maximum power density of 425 mW cm
<sup>-2</sup>
) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
leads to the same performance as that of the reference MEA at low current density (<500 mA cm
<sup>-2</sup>
) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g
<sup>-1</sup>
<sub>Pt</sub>
versus 0.85 kW g
<sup>-1</sup>
<sub>Pt</sub>
). For plasma prepared cathodes with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the cathodic Pt utilization efficiency is 2.7 kW g
<sup>-1</sup>
<sub>Pt</sub>
, which is 3 times higher than that obtained in the commercial cathode.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B25F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Phénomène transport plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Plasma transport processes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Hélicon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Helicons</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Puissance volumique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Power density</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Current density</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Proton</s0>
<s5>57</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Protons</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s5>63</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s5>63</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Courant faible</s0>
<s5>64</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Low current</s0>
<s5>64</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Corriente débil</s0>
<s5>64</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>5225F</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>103</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0143225 INIST</NO>
<ET>Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system</ET>
<AU>CAILLARD (A.); CHARLES (C.); RAMDUTT (D.); BOSWELL (R.); BRAULT (P.)</AU>
<AF>Space Plasma, Power and Propulsion group, Research School of Physical Sciences and Engineering, The Australian National University/Canberra, ACT 0200/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Groupe de Recherche sur l'Energétique des Milieux Ionisés, UMR6606 Université d'Orléans -CNRS Polytech'Orléans, BP6744/45067 Orléans/France (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2009; Vol. 42; No. 4; 045207.1-045207.9; Bibl. 43 ref.</SO>
<LA>Anglais</LA>
<EA>A helicon plasma sputtering system is used to deposit small amounts of platinum on microporous carbon support composed of Vulcan XC 72 carbon particles (known as gas diffusion layer) to form Pt catalyzed electrodes for proton exchange membrane fuel cells. Electrodes with low Pt loading are prepared, assembled in custom-made membrane electrode assemblies (MEAs) and tested for the hydrogen oxydation and the oxygen reduction. Initially, the Nafion® loading spread on these plasma prepared electrodes is optimized by measuring the MEA performance. It is found that the optimum Nafion® loading is 1 mg cm
<sup>-2</sup>
for an electrode previously covered with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
using the helicon plasma system. For a commercial electrode prepared by ink processes with 0.5 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the optimized Nafion® loading is 2 mg cm
<sup>-2</sup>
. Using the respective optimized Nafion® loading, the electrical performance of the custom-made MEA with one plasma prepared electrode (either anode or cathode) is compared with that of a reference MEA from Electrochem Inc. (Pt loading per electrode of 0.5 mg cm
<sup>-2</sup>
and maximum power density of 425 mW cm
<sup>-2</sup>
) without gas humidification. The custom-made MEA fitted with an anode covered with 0.005 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
leads to the same performance as that of the reference MEA at low current density (<500 mA cm
<sup>-2</sup>
) and high gas backpressure (3 bar). This result indicates that the catalyst utilization efficiency in the plasma prepared anode is 100 times higher than that in the commercial anode (85 kW g
<sup>-1</sup>
<sub>Pt</sub>
versus 0.85 kW g
<sup>-1</sup>
<sub>Pt</sub>
). For plasma prepared cathodes with 0.1 mg
<sub>Pt</sub>
cm
<sup>-2</sup>
, the cathodic Pt utilization efficiency is 2.7 kW g
<sup>-1</sup>
<sub>Pt</sub>
, which is 3 times higher than that obtained in the commercial cathode.</EA>
<CC>001B50B25F</CC>
<FD>Pulvérisation irradiation; Diffusion(transport); Phénomène transport plasma; Hélicon; Puissance volumique; Densité courant; Proton; Carbone; Hydrogène; Oxygène; Courant faible; 5225F</FD>
<ED>Sputtering; Diffusion; Plasma transport processes; Helicons; Power density; Current density; Protons; Carbon; Hydrogen; Oxygen; Low current</ED>
<SD>Corriente débil</SD>
<LO>INIST-5841.354000186910490360</LO>
<ID>09-0143225</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002F16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0143225
   |texte=   Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024