Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae

Identifieur interne : 002E87 ( PascalFrancis/Corpus ); précédent : 002E86; suivant : 002E88

Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae

Auteurs : P. Brandon Matheny ; M. Catherine Aime ; Neale L. Bougher ; Bart Buyck ; Dennis E. Desjardin ; Egon Horak ; Bradley R. Kropp ; D. Jean Lodge ; Kasem Soytong ; James M. Trappe ; David S. Hibbett

Source :

RBID : Pascal:09-0163619

Descripteurs français

English descriptors

Abstract

Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0305-0270
A02 01      @0 JBIODN
A03   1    @0 J. biogeogr.
A05       @2 36
A06       @2 4
A08 01  1  ENG  @1 Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae
A11 01  1    @1 BRANDON MATHENY (P.)
A11 02  1    @1 AIME (M. Catherine)
A11 03  1    @1 BOUGHER (Neale L.)
A11 04  1    @1 BUYCK (Bart)
A11 05  1    @1 DESJARDIN (Dennis E.)
A11 06  1    @1 HORAK (Egon)
A11 07  1    @1 KROPP (Bradley R.)
A11 08  1    @1 LODGE (D. Jean)
A11 09  1    @1 SOYTONG (Kasem)
A11 10  1    @1 TRAPPE (James M.)
A11 11  1    @1 HIBBETT (David S.)
A14 01      @1 Biology Department, Clark University @2 Worcester, MA @3 USA @Z 1 aut. @Z 11 aut.
A14 02      @1 Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center @2 Baton Rouge, LA @3 USA @Z 2 aut.
A14 03      @1 Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre @2 Perth, WA @3 AUS @Z 3 aut.
A14 04      @1 Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39 @2 Paris @3 FRA @Z 4 aut.
A14 05      @1 Department of Biology, San Francisco State University @2 San Francisco, CA @3 USA @Z 5 aut.
A14 06      @1 Nikodemweg 5 @2 Innsbruck @3 AUT @Z 6 aut.
A14 07      @1 Department of Biology, Utah State University @2 Logan, UT @3 USA @Z 7 aut.
A14 08      @1 Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station @2 Luquillo @3 PRI @Z 8 aut.
A14 09      @1 Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang @2 Bangkok @3 THA @Z 9 aut.
A14 10      @1 Department of Forest Science, Oregon State University @2 Corvallis, OR @3 USA @Z 10 aut.
A20       @1 577-592
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 15698 @5 354000184838010020
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 3 p.1/4
A47 01  1    @0 09-0163619
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of biogeography
A66 01      @0 GBR
C01 01    ENG  @0 Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.
C02 01  X    @0 002A14B04A
C03 01  X  FRE  @0 Historique @5 01
C03 01  X  ENG  @0 Case history @5 01
C03 01  X  SPA  @0 Estudio histórico @5 01
C03 02  X  FRE  @0 Biogéographie @5 02
C03 02  X  ENG  @0 Biogeography @5 02
C03 02  X  SPA  @0 Biogeografía @5 02
C03 03  X  FRE  @0 Diversification @5 03
C03 03  X  ENG  @0 Diversification @5 03
C03 03  X  SPA  @0 Diversificación @5 03
C03 04  X  FRE  @0 Dispersion @5 04
C03 04  X  ENG  @0 Dispersion @5 04
C03 04  X  SPA  @0 Dispersión @5 04
C03 05  X  FRE  @0 Ectomycorhize @5 05
C03 05  X  ENG  @0 Ectomycorrhiza @5 05
C03 05  X  SPA  @0 Ectomicorriza @5 05
C03 06  X  FRE  @0 Horloge moléculaire @5 06
C03 06  X  ENG  @0 Molecular clock @5 06
C03 06  X  SPA  @0 Reloj molecular @5 06
C03 07  X  FRE  @0 Vicariance @5 07
C03 07  X  ENG  @0 Vicariance @5 07
C03 07  X  SPA  @0 Vicariancia @5 07
C03 08  X  FRE  @0 Fungi @2 NS @5 49
C03 08  X  ENG  @0 Fungi @2 NS @5 49
C03 08  X  SPA  @0 Fungi @2 NS @5 49
C03 09  X  FRE  @0 Basidiomycota @2 NS @5 50
C03 09  X  ENG  @0 Basidiomycota @2 NS @5 50
C03 09  X  SPA  @0 Basidiomycota @2 NS @5 50
C07 01  X  FRE  @0 Mycorhize
C07 01  X  ENG  @0 Mycorrhiza
C07 01  X  SPA  @0 Micorriza
C07 02  X  FRE  @0 Symbionte @5 17
C07 02  X  ENG  @0 Symbiont @5 17
C07 02  X  SPA  @0 Simbionte @5 17
N21       @1 117
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0163619 INIST
ET : Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae
AU : BRANDON MATHENY (P.); AIME (M. Catherine); BOUGHER (Neale L.); BUYCK (Bart); DESJARDIN (Dennis E.); HORAK (Egon); KROPP (Bradley R.); LODGE (D. Jean); SOYTONG (Kasem); TRAPPE (James M.); HIBBETT (David S.)
AF : Biology Department, Clark University/Worcester, MA/Etats-Unis (1 aut., 11 aut.); Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center/Baton Rouge, LA/Etats-Unis (2 aut.); Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre/Perth, WA/Australie (3 aut.); Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39/Paris/France (4 aut.); Department of Biology, San Francisco State University/San Francisco, CA/Etats-Unis (5 aut.); Nikodemweg 5/Innsbruck/Autriche (6 aut.); Department of Biology, Utah State University/Logan, UT/Etats-Unis (7 aut.); Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station/Luquillo/Porto Rico (8 aut.); Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang/Bangkok/Thaïlande (9 aut.); Department of Forest Science, Oregon State University/Corvallis, OR/Etats-Unis (10 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of biogeography; ISSN 0305-0270; Coden JBIODN; Royaume-Uni; Da. 2009; Vol. 36; No. 4; Pp. 577-592; Bibl. 3 p.1/4
LA : Anglais
EA : Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.
CC : 002A14B04A
FD : Historique; Biogéographie; Diversification; Dispersion; Ectomycorhize; Horloge moléculaire; Vicariance; Fungi; Basidiomycota
FG : Mycorhize; Symbionte
ED : Case history; Biogeography; Diversification; Dispersion; Ectomycorrhiza; Molecular clock; Vicariance; Fungi; Basidiomycota
EG : Mycorrhiza; Symbiont
SD : Estudio histórico; Biogeografía; Diversificación; Dispersión; Ectomicorriza; Reloj molecular; Vicariancia; Fungi; Basidiomycota
LO : INIST-15698.354000184838010020
ID : 09-0163619

Links to Exploration step

Pascal:09-0163619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae</title>
<author>
<name sortKey="Brandon Matheny, P" sort="Brandon Matheny, P" uniqKey="Brandon Matheny P" first="P." last="Brandon Matheny">P. Brandon Matheny</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Biology Department, Clark University</s1>
<s2>Worcester, MA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aime, M Catherine" sort="Aime, M Catherine" uniqKey="Aime M" first="M. Catherine" last="Aime">M. Catherine Aime</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center</s1>
<s2>Baton Rouge, LA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bougher, Neale L" sort="Bougher, Neale L" uniqKey="Bougher N" first="Neale L." last="Bougher">Neale L. Bougher</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre</s1>
<s2>Perth, WA</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Buyck, Bart" sort="Buyck, Bart" uniqKey="Buyck B" first="Bart" last="Buyck">Bart Buyck</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Desjardin, Dennis E" sort="Desjardin, Dennis E" uniqKey="Desjardin D" first="Dennis E." last="Desjardin">Dennis E. Desjardin</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Biology, San Francisco State University</s1>
<s2>San Francisco, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horak, Egon" sort="Horak, Egon" uniqKey="Horak E" first="Egon" last="Horak">Egon Horak</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Nikodemweg 5</s1>
<s2>Innsbruck</s2>
<s3>AUT</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kropp, Bradley R" sort="Kropp, Bradley R" uniqKey="Kropp B" first="Bradley R." last="Kropp">Bradley R. Kropp</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Department of Biology, Utah State University</s1>
<s2>Logan, UT</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lodge, D Jean" sort="Lodge, D Jean" uniqKey="Lodge D" first="D. Jean" last="Lodge">D. Jean Lodge</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station</s1>
<s2>Luquillo</s2>
<s3>PRI</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soytong, Kasem" sort="Soytong, Kasem" uniqKey="Soytong K" first="Kasem" last="Soytong">Kasem Soytong</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang</s1>
<s2>Bangkok</s2>
<s3>THA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trappe, James M" sort="Trappe, James M" uniqKey="Trappe J" first="James M." last="Trappe">James M. Trappe</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Department of Forest Science, Oregon State University</s1>
<s2>Corvallis, OR</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hibbett, David S" sort="Hibbett, David S" uniqKey="Hibbett D" first="David S." last="Hibbett">David S. Hibbett</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Biology Department, Clark University</s1>
<s2>Worcester, MA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0163619</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0163619 INIST</idno>
<idno type="RBID">Pascal:09-0163619</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002E87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae</title>
<author>
<name sortKey="Brandon Matheny, P" sort="Brandon Matheny, P" uniqKey="Brandon Matheny P" first="P." last="Brandon Matheny">P. Brandon Matheny</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Biology Department, Clark University</s1>
<s2>Worcester, MA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aime, M Catherine" sort="Aime, M Catherine" uniqKey="Aime M" first="M. Catherine" last="Aime">M. Catherine Aime</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center</s1>
<s2>Baton Rouge, LA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bougher, Neale L" sort="Bougher, Neale L" uniqKey="Bougher N" first="Neale L." last="Bougher">Neale L. Bougher</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre</s1>
<s2>Perth, WA</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Buyck, Bart" sort="Buyck, Bart" uniqKey="Buyck B" first="Bart" last="Buyck">Bart Buyck</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Desjardin, Dennis E" sort="Desjardin, Dennis E" uniqKey="Desjardin D" first="Dennis E." last="Desjardin">Dennis E. Desjardin</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Biology, San Francisco State University</s1>
<s2>San Francisco, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horak, Egon" sort="Horak, Egon" uniqKey="Horak E" first="Egon" last="Horak">Egon Horak</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Nikodemweg 5</s1>
<s2>Innsbruck</s2>
<s3>AUT</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kropp, Bradley R" sort="Kropp, Bradley R" uniqKey="Kropp B" first="Bradley R." last="Kropp">Bradley R. Kropp</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Department of Biology, Utah State University</s1>
<s2>Logan, UT</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lodge, D Jean" sort="Lodge, D Jean" uniqKey="Lodge D" first="D. Jean" last="Lodge">D. Jean Lodge</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station</s1>
<s2>Luquillo</s2>
<s3>PRI</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soytong, Kasem" sort="Soytong, Kasem" uniqKey="Soytong K" first="Kasem" last="Soytong">Kasem Soytong</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang</s1>
<s2>Bangkok</s2>
<s3>THA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trappe, James M" sort="Trappe, James M" uniqKey="Trappe J" first="James M." last="Trappe">James M. Trappe</name>
<affiliation>
<inist:fA14 i1="10">
<s1>Department of Forest Science, Oregon State University</s1>
<s2>Corvallis, OR</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hibbett, David S" sort="Hibbett, David S" uniqKey="Hibbett D" first="David S." last="Hibbett">David S. Hibbett</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Biology Department, Clark University</s1>
<s2>Worcester, MA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of biogeography</title>
<title level="j" type="abbreviated">J. biogeogr.</title>
<idno type="ISSN">0305-0270</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of biogeography</title>
<title level="j" type="abbreviated">J. biogeogr.</title>
<idno type="ISSN">0305-0270</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota</term>
<term>Biogeography</term>
<term>Case history</term>
<term>Dispersion</term>
<term>Diversification</term>
<term>Ectomycorrhiza</term>
<term>Fungi</term>
<term>Molecular clock</term>
<term>Vicariance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Historique</term>
<term>Biogéographie</term>
<term>Diversification</term>
<term>Dispersion</term>
<term>Ectomycorhize</term>
<term>Horloge moléculaire</term>
<term>Vicariance</term>
<term>Fungi</term>
<term>Basidiomycota</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0305-0270</s0>
</fA01>
<fA02 i1="01">
<s0>JBIODN</s0>
</fA02>
<fA03 i2="1">
<s0>J. biogeogr.</s0>
</fA03>
<fA05>
<s2>36</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRANDON MATHENY (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AIME (M. Catherine)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOUGHER (Neale L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BUYCK (Bart)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DESJARDIN (Dennis E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HORAK (Egon)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KROPP (Bradley R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LODGE (D. Jean)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SOYTONG (Kasem)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TRAPPE (James M.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>HIBBETT (David S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Biology Department, Clark University</s1>
<s2>Worcester, MA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center</s1>
<s2>Baton Rouge, LA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre</s1>
<s2>Perth, WA</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Biology, San Francisco State University</s1>
<s2>San Francisco, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Nikodemweg 5</s1>
<s2>Innsbruck</s2>
<s3>AUT</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Biology, Utah State University</s1>
<s2>Logan, UT</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station</s1>
<s2>Luquillo</s2>
<s3>PRI</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang</s1>
<s2>Bangkok</s2>
<s3>THA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>Department of Forest Science, Oregon State University</s1>
<s2>Corvallis, OR</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>577-592</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15698</s2>
<s5>354000184838010020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0163619</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of biogeography</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B04A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Historique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Case history</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio histórico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Biogéographie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Biogeography</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Biogeografía</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Diversification</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Diversification</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Diversificación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dispersion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Dispersion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Dispersión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ectomycorhize</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ectomycorrhiza</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ectomicorriza</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Horloge moléculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Molecular clock</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Reloj molecular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Vicariance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Vicariance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Vicariancia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fungi</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fungi</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fungi</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Basidiomycota</s0>
<s2>NS</s2>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Basidiomycota</s0>
<s2>NS</s2>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Basidiomycota</s0>
<s2>NS</s2>
<s5>50</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Mycorhize</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Mycorrhiza</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Micorriza</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Symbionte</s0>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Symbiont</s0>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Simbionte</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>117</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0163619 INIST</NO>
<ET>Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae</ET>
<AU>BRANDON MATHENY (P.); AIME (M. Catherine); BOUGHER (Neale L.); BUYCK (Bart); DESJARDIN (Dennis E.); HORAK (Egon); KROPP (Bradley R.); LODGE (D. Jean); SOYTONG (Kasem); TRAPPE (James M.); HIBBETT (David S.)</AU>
<AF>Biology Department, Clark University/Worcester, MA/Etats-Unis (1 aut., 11 aut.); Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center/Baton Rouge, LA/Etats-Unis (2 aut.); Department of Environment and Conservation, Western Australian Herbarium, Bentley Delivery Centre/Perth, WA/Australie (3 aut.); Muséum National d'Histoire Naturelle, Département Systématique et Evolution, USM 602 -CP 39/Paris/France (4 aut.); Department of Biology, San Francisco State University/San Francisco, CA/Etats-Unis (5 aut.); Nikodemweg 5/Innsbruck/Autriche (6 aut.); Department of Biology, Utah State University/Logan, UT/Etats-Unis (7 aut.); Center for Forest Mycology Research, US Department of Agriculture, Forest Service, Northern Research Station/Luquillo/Porto Rico (8 aut.); Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang/Bangkok/Thaïlande (9 aut.); Department of Forest Science, Oregon State University/Corvallis, OR/Etats-Unis (10 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of biogeography; ISSN 0305-0270; Coden JBIODN; Royaume-Uni; Da. 2009; Vol. 36; No. 4; Pp. 577-592; Bibl. 3 p.1/4</SO>
<LA>Anglais</LA>
<EA>Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa-Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.</EA>
<CC>002A14B04A</CC>
<FD>Historique; Biogéographie; Diversification; Dispersion; Ectomycorhize; Horloge moléculaire; Vicariance; Fungi; Basidiomycota</FD>
<FG>Mycorhize; Symbionte</FG>
<ED>Case history; Biogeography; Diversification; Dispersion; Ectomycorrhiza; Molecular clock; Vicariance; Fungi; Basidiomycota</ED>
<EG>Mycorrhiza; Symbiont</EG>
<SD>Estudio histórico; Biogeografía; Diversificación; Dispersión; Ectomicorriza; Reloj molecular; Vicariancia; Fungi; Basidiomycota</SD>
<LO>INIST-15698.354000184838010020</LO>
<ID>09-0163619</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002E87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0163619
   |texte=   Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024