Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust

Identifieur interne : 002C32 ( PascalFrancis/Corpus ); précédent : 002C31; suivant : 002C33

Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust

Auteurs : Scott C. Doney ; Ivan Lima ; Richard A. Feely ; David M. Glover ; Keith Lindsay ; Natalie Mahowald ; J. Keith Moore ; Rik Wanninkhof

Source :

RBID : Pascal:09-0358085

Descripteurs français

English descriptors

Abstract

We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea COz flux, surface-water carbon dioxide partial pressure pCO2, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO2 and air-sea CO2 flux variability (global integrated anomaly rms of 0.34 Pg Cyr-1). Biological export and thermal solubility effects partially damp circulation-driven pCO2 variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO2 and air-sea CO2 flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO2 flux in some specific regions. A component of air-sea CO2 flux variability (global integrated anomaly rms of 0.14 Pg Cyr-1) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO2 outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO2 inversions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0967-0645
A03   1    @0 Deep-sea res., Part 2, Top. stud. oceanogr.
A05       @2 56
A06       @2 8-10
A08 01  1  ENG  @1 Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust
A09 01  1  ENG  @1 Surface Ocean CO2 Variabilities and Vulnerabilities
A11 01  1    @1 DONEY (Scott C.)
A11 02  1    @1 LIMA (Ivan)
A11 03  1    @1 FEELY (Richard A.)
A11 04  1    @1 GLOVER (David M.)
A11 05  1    @1 LINDSAY (Keith)
A11 06  1    @1 MAHOWALD (Natalie)
A11 07  1    @1 MOORE (J. Keith)
A11 08  1    @1 WANNINKHOF (Rik)
A12 01  1    @1 ROY (Sylvie) @9 ed.
A12 02  1    @1 METZL (Nicolas) @9 ed.
A12 03  1    @1 TILBROOK (Bronte) @9 ed.
A12 04  1    @1 DONEY (Scott C.) @9 ed.
A12 05  1    @1 FEELY (Richard A.) @9 ed.
A12 06  1    @1 BAKKER (Dorothee) @9 ed.
A12 07  1    @1 LE QUERE (Corinne) @9 ed.
A14 01      @1 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road @2 Woods Hole, MA 02543 @3 USA @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration @2 Seattle, WA @3 USA @Z 3 aut.
A14 03      @1 Climate and Global Dynamics Division, National Center for Atmospheric Research @2 Boulder, CO @3 USA @Z 5 aut.
A14 04      @1 Earth and Atmospheric Sciences, Cornell University @2 Cornell, NY @3 USA @Z 6 aut.
A14 05      @1 Department of Earth System Science, University of California @2 Irvine, CA @3 USA @Z 7 aut.
A14 06      @1 Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration @2 Miami, FL @3 USA @Z 8 aut.
A15 01      @1 Institut Universitaire Européenne de la Mer, IMBER International Project Office, Technopôle Brest-Iroise, Place Nicolas Copernic @2 Plouzané 29280 @3 FRA @Z 1 aut.
A15 02      @1 LOCEAN/IPSL, CNRS, Univ. P.M. Curie, Case 100, 4 pl. Jussieu @2 75252 Paris @3 FRA @Z 2 aut.
A15 03      @1 CSIRO Marine and Atmospheric Research, Castray Esplanade @2 Hobart TAS 7000 @3 AUS @Z 3 aut.
A20       @1 640-655
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 7679A2 @5 354000187106900120
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 09-0358085
A60       @1 P
A61       @0 A
A64 01  1    @0 Deep-sea research. Part 2. Topical studies in oceanography
A66 01      @0 GBR
C01 01    ENG  @0 We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea COz flux, surface-water carbon dioxide partial pressure pCO2, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO2 and air-sea CO2 flux variability (global integrated anomaly rms of 0.34 Pg Cyr-1). Biological export and thermal solubility effects partially damp circulation-driven pCO2 variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO2 and air-sea CO2 flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO2 flux in some specific regions. A component of air-sea CO2 flux variability (global integrated anomaly rms of 0.14 Pg Cyr-1) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO2 outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO2 inversions.
C02 01  2    @0 001E02B
C02 02  2    @0 001E01P02
C02 03  2    @0 001E01H
C02 04  2    @0 226C02
C02 05  2    @0 223B
C03 01  X  FRE  @0 Variation interannuelle @5 01
C03 01  X  ENG  @0 Interannual variation @5 01
C03 01  X  SPA  @0 Variación interanual @5 01
C03 02  X  FRE  @0 Carbone minéral dissous @5 02
C03 02  X  ENG  @0 Dissolved inorganic carbon @5 02
C03 02  X  SPA  @0 Carbono mineral disuelto @5 02
C03 03  2  FRE  @0 Air @5 03
C03 03  2  ENG  @0 air @5 03
C03 04  2  FRE  @0 Climat @5 04
C03 04  2  ENG  @0 climate @5 04
C03 04  2  SPA  @0 Clima @5 04
C03 05  X  FRE  @0 Poussière atmosphérique @5 05
C03 05  X  ENG  @0 Atmospheric dust @5 05
C03 05  X  SPA  @0 Polvo atmosférico @5 05
C03 06  2  FRE  @0 Monde @5 06
C03 06  2  ENG  @0 global @5 06
C03 06  2  SPA  @0 Mundo @5 06
C03 07  X  FRE  @0 Simulation rétrospective @5 07
C03 07  X  ENG  @0 Hindcast @5 07
C03 07  X  SPA  @0 Simulación retrospectiva @5 07
C03 08  2  FRE  @0 Ecosystème @5 08
C03 08  2  ENG  @0 ecosystems @5 08
C03 08  2  SPA  @0 Ecosistema @5 08
C03 09  2  FRE  @0 Modèle @5 09
C03 09  2  ENG  @0 models @5 09
C03 09  2  SPA  @0 Modelo @5 09
C03 10  X  FRE  @0 Retombée poussière @5 10
C03 10  X  ENG  @0 Dust fall out @5 10
C03 10  X  SPA  @0 Recaída polvo @5 10
C03 11  2  FRE  @0 Variabilité @5 11
C03 11  2  ENG  @0 variability @5 11
C03 12  2  FRE  @0 Eau surface @5 12
C03 12  2  ENG  @0 surface water @5 12
C03 12  2  SPA  @0 Agua superficie @5 12
C03 13  2  FRE  @0 Dioxyde carbone @5 13
C03 13  2  ENG  @0 carbon dioxide @5 13
C03 14  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 14
C03 14  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 14
C03 14  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 14
C03 15  2  FRE  @0 Pression partielle @5 15
C03 15  2  ENG  @0 partial pressure @5 15
C03 15  2  SPA  @0 Presión parcial @5 15
C03 16  2  FRE  @0 Inventaire @5 16
C03 16  2  ENG  @0 inventory @5 16
C03 16  2  SPA  @0 Inventario @5 16
C03 17  2  FRE  @0 Carte @5 17
C03 17  2  ENG  @0 maps @5 17
C03 17  2  SPA  @0 Mapa @5 17
C03 18  2  FRE  @0 Anomalie @5 18
C03 18  2  ENG  @0 anomalies @5 18
C03 18  2  SPA  @0 Anomalía @5 18
C03 19  X  FRE  @0 Climatologie @5 19
C03 19  X  ENG  @0 Climatology @5 19
C03 19  X  SPA  @0 Climatología @5 19
C03 20  X  FRE  @0 Développement Taylor @5 20
C03 20  X  ENG  @0 Taylor expansion @5 20
C03 20  X  SPA  @0 Desarrollo Taylor @5 20
C03 21  X  FRE  @0 Régression linéaire @5 21
C03 21  X  ENG  @0 Linear regression @5 21
C03 21  X  SPA  @0 Regresión lineal @5 21
C03 22  2  FRE  @0 Régression statistique @5 22
C03 22  2  ENG  @0 regression analysis @5 22
C03 22  2  SPA  @0 Regresión estadística @5 22
C03 23  2  FRE  @0 Océan Antarctique @2 564 @5 24
C03 23  2  ENG  @0 Antarctic Ocean @2 564 @5 24
C03 24  2  FRE  @0 Hémisphère Nord @5 25
C03 24  2  ENG  @0 Northern Hemisphere @5 25
C03 24  2  SPA  @0 Hemisferio norte @5 25
N21       @1 257
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0358085 INIST
ET : Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust
AU : DONEY (Scott C.); LIMA (Ivan); FEELY (Richard A.); GLOVER (David M.); LINDSAY (Keith); MAHOWALD (Natalie); MOORE (J. Keith); WANNINKHOF (Rik); ROY (Sylvie); METZL (Nicolas); TILBROOK (Bronte); DONEY (Scott C.); FEELY (Richard A.); BAKKER (Dorothee); LE QUERE (Corinne)
AF : Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road/Woods Hole, MA 02543/Etats-Unis (1 aut., 2 aut., 4 aut.); Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration/Seattle, WA/Etats-Unis (3 aut.); Climate and Global Dynamics Division, National Center for Atmospheric Research/Boulder, CO/Etats-Unis (5 aut.); Earth and Atmospheric Sciences, Cornell University/Cornell, NY/Etats-Unis (6 aut.); Department of Earth System Science, University of California/Irvine, CA/Etats-Unis (7 aut.); Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration/Miami, FL/Etats-Unis (8 aut.); Institut Universitaire Européenne de la Mer, IMBER International Project Office, Technopôle Brest-Iroise, Place Nicolas Copernic/Plouzané 29280/France (1 aut.); LOCEAN/IPSL, CNRS, Univ. P.M. Curie, Case 100, 4 pl. Jussieu/75252 Paris/France (2 aut.); CSIRO Marine and Atmospheric Research, Castray Esplanade/Hobart TAS 7000/Australie (3 aut.)
DT : Publication en série; Niveau analytique
SO : Deep-sea research. Part 2. Topical studies in oceanography; ISSN 0967-0645; Royaume-Uni; Da. 2009; Vol. 56; No. 8-10; Pp. 640-655; Bibl. 1 p.1/2
LA : Anglais
EA : We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea COz flux, surface-water carbon dioxide partial pressure pCO2, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO2 and air-sea CO2 flux variability (global integrated anomaly rms of 0.34 Pg Cyr-1). Biological export and thermal solubility effects partially damp circulation-driven pCO2 variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO2 and air-sea CO2 flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO2 flux in some specific regions. A component of air-sea CO2 flux variability (global integrated anomaly rms of 0.14 Pg Cyr-1) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO2 outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO2 inversions.
CC : 001E02B; 001E01P02; 001E01H; 226C02; 223B
FD : Variation interannuelle; Carbone minéral dissous; Air; Climat; Poussière atmosphérique; Monde; Simulation rétrospective; Ecosystème; Modèle; Retombée poussière; Variabilité; Eau surface; Dioxyde carbone; Dioxyde de carbone; Pression partielle; Inventaire; Carte; Anomalie; Climatologie; Développement Taylor; Régression linéaire; Régression statistique; Océan Antarctique; Hémisphère Nord
ED : Interannual variation; Dissolved inorganic carbon; air; climate; Atmospheric dust; global; Hindcast; ecosystems; models; Dust fall out; variability; surface water; carbon dioxide; Carbon dioxide; partial pressure; inventory; maps; anomalies; Climatology; Taylor expansion; Linear regression; regression analysis; Antarctic Ocean; Northern Hemisphere
SD : Variación interanual; Carbono mineral disuelto; Clima; Polvo atmosférico; Mundo; Simulación retrospectiva; Ecosistema; Modelo; Recaída polvo; Agua superficie; Carbono dióxido; Presión parcial; Inventario; Mapa; Anomalía; Climatología; Desarrollo Taylor; Regresión lineal; Regresión estadística; Hemisferio norte
LO : INIST-7679A2.354000187106900120
ID : 09-0358085

Links to Exploration step

Pascal:09-0358085

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO
<sub>2</sub>
fluxes: Physical climate and atmospheric dust</title>
<author>
<name sortKey="Doney, Scott C" sort="Doney, Scott C" uniqKey="Doney S" first="Scott C." last="Doney">Scott C. Doney</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lima, Ivan" sort="Lima, Ivan" uniqKey="Lima I" first="Ivan" last="Lima">Ivan Lima</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feely, Richard A" sort="Feely, Richard A" uniqKey="Feely R" first="Richard A." last="Feely">Richard A. Feely</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Seattle, WA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glover, David M" sort="Glover, David M" uniqKey="Glover D" first="David M." last="Glover">David M. Glover</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lindsay, Keith" sort="Lindsay, Keith" uniqKey="Lindsay K" first="Keith" last="Lindsay">Keith Lindsay</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahowald, Natalie" sort="Mahowald, Natalie" uniqKey="Mahowald N" first="Natalie" last="Mahowald">Natalie Mahowald</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Earth and Atmospheric Sciences, Cornell University</s1>
<s2>Cornell, NY</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moore, J Keith" sort="Moore, J Keith" uniqKey="Moore J" first="J. Keith" last="Moore">J. Keith Moore</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Earth System Science, University of California</s1>
<s2>Irvine, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wanninkhof, Rik" sort="Wanninkhof, Rik" uniqKey="Wanninkhof R" first="Rik" last="Wanninkhof">Rik Wanninkhof</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Miami, FL</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0358085</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0358085 INIST</idno>
<idno type="RBID">Pascal:09-0358085</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002C32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO
<sub>2</sub>
fluxes: Physical climate and atmospheric dust</title>
<author>
<name sortKey="Doney, Scott C" sort="Doney, Scott C" uniqKey="Doney S" first="Scott C." last="Doney">Scott C. Doney</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lima, Ivan" sort="Lima, Ivan" uniqKey="Lima I" first="Ivan" last="Lima">Ivan Lima</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feely, Richard A" sort="Feely, Richard A" uniqKey="Feely R" first="Richard A." last="Feely">Richard A. Feely</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Seattle, WA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glover, David M" sort="Glover, David M" uniqKey="Glover D" first="David M." last="Glover">David M. Glover</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lindsay, Keith" sort="Lindsay, Keith" uniqKey="Lindsay K" first="Keith" last="Lindsay">Keith Lindsay</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahowald, Natalie" sort="Mahowald, Natalie" uniqKey="Mahowald N" first="Natalie" last="Mahowald">Natalie Mahowald</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Earth and Atmospheric Sciences, Cornell University</s1>
<s2>Cornell, NY</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moore, J Keith" sort="Moore, J Keith" uniqKey="Moore J" first="J. Keith" last="Moore">J. Keith Moore</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Earth System Science, University of California</s1>
<s2>Irvine, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wanninkhof, Rik" sort="Wanninkhof, Rik" uniqKey="Wanninkhof R" first="Rik" last="Wanninkhof">Rik Wanninkhof</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Miami, FL</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Deep-sea research. Part 2. Topical studies in oceanography</title>
<title level="j" type="abbreviated">Deep-sea res., Part 2, Top. stud. oceanogr.</title>
<idno type="ISSN">0967-0645</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Deep-sea research. Part 2. Topical studies in oceanography</title>
<title level="j" type="abbreviated">Deep-sea res., Part 2, Top. stud. oceanogr.</title>
<idno type="ISSN">0967-0645</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antarctic Ocean</term>
<term>Atmospheric dust</term>
<term>Carbon dioxide</term>
<term>Climatology</term>
<term>Dissolved inorganic carbon</term>
<term>Dust fall out</term>
<term>Hindcast</term>
<term>Interannual variation</term>
<term>Linear regression</term>
<term>Northern Hemisphere</term>
<term>Taylor expansion</term>
<term>air</term>
<term>anomalies</term>
<term>carbon dioxide</term>
<term>climate</term>
<term>ecosystems</term>
<term>global</term>
<term>inventory</term>
<term>maps</term>
<term>models</term>
<term>partial pressure</term>
<term>regression analysis</term>
<term>surface water</term>
<term>variability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Variation interannuelle</term>
<term>Carbone minéral dissous</term>
<term>Air</term>
<term>Climat</term>
<term>Poussière atmosphérique</term>
<term>Monde</term>
<term>Simulation rétrospective</term>
<term>Ecosystème</term>
<term>Modèle</term>
<term>Retombée poussière</term>
<term>Variabilité</term>
<term>Eau surface</term>
<term>Dioxyde carbone</term>
<term>Dioxyde de carbone</term>
<term>Pression partielle</term>
<term>Inventaire</term>
<term>Carte</term>
<term>Anomalie</term>
<term>Climatologie</term>
<term>Développement Taylor</term>
<term>Régression linéaire</term>
<term>Régression statistique</term>
<term>Océan Antarctique</term>
<term>Hémisphère Nord</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea CO
<sub>z</sub>
flux, surface-water carbon dioxide partial pressure pCO
<sub>2</sub>
, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.34 Pg Cyr
<sup>-1</sup>
). Biological export and thermal solubility effects partially damp circulation-driven pCO
<sub>2</sub>
variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO
<sub>2</sub>
flux in some specific regions. A component of air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.14 Pg Cyr
<sup>-1</sup>
) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO
<sub>2</sub>
outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO
<sub>2</sub>
inversions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0967-0645</s0>
</fA01>
<fA03 i2="1">
<s0>Deep-sea res., Part 2, Top. stud. oceanogr.</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>8-10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO
<sub>2</sub>
fluxes: Physical climate and atmospheric dust</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Surface Ocean CO
<sub>2</sub>
Variabilities and Vulnerabilities</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DONEY (Scott C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIMA (Ivan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FEELY (Richard A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GLOVER (David M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LINDSAY (Keith)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MAHOWALD (Natalie)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MOORE (J. Keith)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WANNINKHOF (Rik)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROY (Sylvie)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>METZL (Nicolas)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>TILBROOK (Bronte)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>DONEY (Scott C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>FEELY (Richard A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>BAKKER (Dorothee)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>LE QUERE (Corinne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road</s1>
<s2>Woods Hole, MA 02543</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Seattle, WA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Earth and Atmospheric Sciences, Cornell University</s1>
<s2>Cornell, NY</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Earth System Science, University of California</s1>
<s2>Irvine, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Miami, FL</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institut Universitaire Européenne de la Mer, IMBER International Project Office, Technopôle Brest-Iroise, Place Nicolas Copernic</s1>
<s2>Plouzané 29280</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>LOCEAN/IPSL, CNRS, Univ. P.M. Curie, Case 100, 4 pl. Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>CSIRO Marine and Atmospheric Research, Castray Esplanade</s1>
<s2>Hobart TAS 7000</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>640-655</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7679A2</s2>
<s5>354000187106900120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0358085</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Deep-sea research. Part 2. Topical studies in oceanography</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea CO
<sub>z</sub>
flux, surface-water carbon dioxide partial pressure pCO
<sub>2</sub>
, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.34 Pg Cyr
<sup>-1</sup>
). Biological export and thermal solubility effects partially damp circulation-driven pCO
<sub>2</sub>
variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO
<sub>2</sub>
flux in some specific regions. A component of air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.14 Pg Cyr
<sup>-1</sup>
) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO
<sub>2</sub>
outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO
<sub>2</sub>
inversions.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02B</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01P02</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01H</s0>
</fC02>
<fC02 i1="04" i2="2">
<s0>226C02</s0>
</fC02>
<fC02 i1="05" i2="2">
<s0>223B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Variation interannuelle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Interannual variation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Variación interanual</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Carbone minéral dissous</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dissolved inorganic carbon</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Carbono mineral disuelto</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Climat</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>climate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Clima</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Poussière atmosphérique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Atmospheric dust</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Polvo atmosférico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Monde</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>global</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Simulation rétrospective</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hindcast</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Simulación retrospectiva</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Ecosystème</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>ecosystems</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Ecosistema</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>models</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Retombée poussière</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dust fall out</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Recaída polvo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Variabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>variability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Eau surface</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>surface water</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Agua superficie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Dioxyde carbone</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>carbon dioxide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Pression partielle</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>partial pressure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Presión parcial</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Inventaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>inventory</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Inventario</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Carte</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>maps</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Mapa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Anomalie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>anomalies</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Anomalía</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Climatologie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Climatology</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Climatología</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Développement Taylor</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Taylor expansion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Desarrollo Taylor</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Régression linéaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Linear regression</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Regresión lineal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Régression statistique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>regression analysis</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Regresión estadística</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Océan Antarctique</s0>
<s2>564</s2>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>Antarctic Ocean</s0>
<s2>564</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>257</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0358085 INIST</NO>
<ET>Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO
<sub>2</sub>
fluxes: Physical climate and atmospheric dust</ET>
<AU>DONEY (Scott C.); LIMA (Ivan); FEELY (Richard A.); GLOVER (David M.); LINDSAY (Keith); MAHOWALD (Natalie); MOORE (J. Keith); WANNINKHOF (Rik); ROY (Sylvie); METZL (Nicolas); TILBROOK (Bronte); DONEY (Scott C.); FEELY (Richard A.); BAKKER (Dorothee); LE QUERE (Corinne)</AU>
<AF>Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road/Woods Hole, MA 02543/Etats-Unis (1 aut., 2 aut., 4 aut.); Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration/Seattle, WA/Etats-Unis (3 aut.); Climate and Global Dynamics Division, National Center for Atmospheric Research/Boulder, CO/Etats-Unis (5 aut.); Earth and Atmospheric Sciences, Cornell University/Cornell, NY/Etats-Unis (6 aut.); Department of Earth System Science, University of California/Irvine, CA/Etats-Unis (7 aut.); Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration/Miami, FL/Etats-Unis (8 aut.); Institut Universitaire Européenne de la Mer, IMBER International Project Office, Technopôle Brest-Iroise, Place Nicolas Copernic/Plouzané 29280/France (1 aut.); LOCEAN/IPSL, CNRS, Univ. P.M. Curie, Case 100, 4 pl. Jussieu/75252 Paris/France (2 aut.); CSIRO Marine and Atmospheric Research, Castray Esplanade/Hobart TAS 7000/Australie (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Deep-sea research. Part 2. Topical studies in oceanography; ISSN 0967-0645; Royaume-Uni; Da. 2009; Vol. 56; No. 8-10; Pp. 640-655; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>We quantify the mechanisms governing interannual variability in the global, upper-ocean inorganic carbon system using a hindcast simulation (1979-2004) of an ecosystem-biogeochemistry model forced with time-evolving atmospheric physics and dust deposition. We analyze the variability of three key, interrelated metrics-air-sea CO
<sub>z</sub>
flux, surface-water carbon dioxide partial pressure pCO
<sub>2</sub>
, and upperocean dissolved inorganic carbon (DIC) inventory-presenting for each metric global spatial maps of the root mean square (rms) of anomalies from a model monthly climatology. The contribution of specific driving factors is diagnosed using Taylor expansions and linear regression analysis. The major regions of variability occur in the Southern Ocean, tropical Indo-Pacific, and Northern Hemisphere temperate and subpolar latitudes. Ocean circulation is the dominant factor driving variability over most of the ocean, modulating surface dissolved inorganic carbon that in turn alters surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.34 Pg Cyr
<sup>-1</sup>
). Biological export and thermal solubility effects partially damp circulation-driven pCO
<sub>2</sub>
variability in the tropics, while in the subtropics, thermal solubility contributes positively to surface-water pCO
<sub>2</sub>
and air-sea CO
<sub>2</sub>
flux variability. Gas transfer and net freshwater inputs induce variability in the air-sea CO
<sub>2</sub>
flux in some specific regions. A component of air-sea CO
<sub>2</sub>
flux variability (global integrated anomaly rms of 0.14 Pg Cyr
<sup>-1</sup>
) arises from variations in biological export production induced by variations in atmospheric iron deposition downwind of dust source regions. Beginning in the mid-1990s, reduced global dust deposition generates increased air-sea CO
<sub>2</sub>
outgassing in the Southern Ocean, consistent with trends derived from atmospheric CO
<sub>2</sub>
inversions.</EA>
<CC>001E02B; 001E01P02; 001E01H; 226C02; 223B</CC>
<FD>Variation interannuelle; Carbone minéral dissous; Air; Climat; Poussière atmosphérique; Monde; Simulation rétrospective; Ecosystème; Modèle; Retombée poussière; Variabilité; Eau surface; Dioxyde carbone; Dioxyde de carbone; Pression partielle; Inventaire; Carte; Anomalie; Climatologie; Développement Taylor; Régression linéaire; Régression statistique; Océan Antarctique; Hémisphère Nord</FD>
<ED>Interannual variation; Dissolved inorganic carbon; air; climate; Atmospheric dust; global; Hindcast; ecosystems; models; Dust fall out; variability; surface water; carbon dioxide; Carbon dioxide; partial pressure; inventory; maps; anomalies; Climatology; Taylor expansion; Linear regression; regression analysis; Antarctic Ocean; Northern Hemisphere</ED>
<SD>Variación interanual; Carbono mineral disuelto; Clima; Polvo atmosférico; Mundo; Simulación retrospectiva; Ecosistema; Modelo; Recaída polvo; Agua superficie; Carbono dióxido; Presión parcial; Inventario; Mapa; Anomalía; Climatología; Desarrollo Taylor; Regresión lineal; Regresión estadística; Hemisferio norte</SD>
<LO>INIST-7679A2.354000187106900120</LO>
<ID>09-0358085</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002C32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0358085
   |texte=   Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024