Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rhizosphere: biophysics, biogeochemistry and ecological relevance

Identifieur interne : 002B44 ( PascalFrancis/Corpus ); précédent : 002B43; suivant : 002B45

Rhizosphere: biophysics, biogeochemistry and ecological relevance

Auteurs : Philippe Hinsinger ; A. Glyn Bengough ; Doris Vetterlein ; Iain M. Young

Source :

RBID : Pascal:09-0412366

Descripteurs français

English descriptors

Abstract

Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0032-079X
A02 01      @0 PLSOA2
A03   1    @0 Plant soil
A05       @2 321
A06       @2 1-2
A08 01  1  ENG  @1 Rhizosphere: biophysics, biogeochemistry and ecological relevance
A09 01  1  ENG  @1 Rhizosphere: achievements and challenges
A11 01  1    @1 HINSINGER (Philippe)
A11 02  1    @1 GLYN BENGOUGH (A.)
A11 03  1    @1 VETTERLEIN (Doris)
A11 04  1    @1 YOUNG (Iain M.)
A12 01  1    @1 DESSAUX (Yves) @9 ed.
A12 02  1    @1 HINSINGER (Philippe) @9 ed.
A14 01      @1 UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala @2 34060 Montpellier @3 FRA @Z 1 aut.
A14 02      @1 Scottish Crop Research Institute @2 Dundee DD2 5DA @3 GBR @Z 2 aut.
A14 03      @1 Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4 @2 06120 Halle/Saale @3 DEU @Z 3 aut.
A14 04      @1 School of Environmental and Rural Sciences, University of New England @2 Armidale, NSW 2351 @3 AUS @Z 4 aut.
A15 01      @1 UPR2355, Institut des Sciences du Végétal, CNRS, Avenue de la terrasse @2 91198 Gif-sur-Yvette @3 FRA @Z 1 aut.
A15 02      @1 UMR 1222 Eco&Sols Ecologie Fonctionnelle et Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala @2 34060 Montpellier @3 FRA @Z 2 aut.
A20       @1 117-152
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 4772 @5 354000170830320050
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 9 p.3/4
A47 01  1    @0 09-0412366
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Plant and soil
A66 01      @0 NLD
C01 01    ENG  @0 Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.
C02 01  X    @0 002A32B03A1
C02 02  X    @0 002A14
C02 03  X    @0 002A32C02B
C03 01  X  FRE  @0 Biophysique @5 01
C03 01  X  ENG  @0 Biophysics @5 01
C03 01  X  SPA  @0 Biofísica @5 01
C03 02  X  FRE  @0 Biogéochimie @5 02
C03 02  X  ENG  @0 Biogeochemistry @5 02
C03 02  X  SPA  @0 Biogeoquímica @5 02
C03 03  X  FRE  @0 Ecologie @5 03
C03 03  X  ENG  @0 Ecology @5 03
C03 03  X  SPA  @0 Ecología @5 03
C03 04  X  FRE  @0 Résistance mécanique @5 04
C03 04  X  ENG  @0 Strength @5 04
C03 04  X  SPA  @0 Resistencia mecánica @5 04
C03 05  X  FRE  @0 Mécanique sol @5 05
C03 05  X  ENG  @0 Soil mechanics @5 05
C03 05  X  SPA  @0 Mecánica suelo @5 05
C03 06  X  FRE  @0 Caractéristique sol @5 06
C03 06  X  ENG  @0 Property of soil @5 06
C03 06  X  SPA  @0 Característica suelo @5 06
C03 07  X  FRE  @0 Structure sol @5 07
C03 07  X  ENG  @0 Soil structure @5 07
C03 07  X  SPA  @0 Estructura suelo @5 07
C03 08  X  FRE  @0 Potentiel hydrique @5 08
C03 08  X  ENG  @0 Water potential @5 08
C03 08  X  SPA  @0 Potencial hídrico @5 08
C03 09  X  FRE  @0 pH @5 09
C03 09  X  ENG  @0 pH @5 09
C03 09  X  SPA  @0 pH @5 09
C03 10  X  FRE  @0 Rhizosphère @5 24
C03 10  X  ENG  @0 Rhizosphere @5 24
C03 10  X  SPA  @0 Rizosfera @5 24
C03 11  X  FRE  @0 Potentiel oxydoréduction @5 28
C03 11  X  ENG  @0 Redox potential @5 28
C03 11  X  SPA  @0 Potencial redox @5 28
C03 12  X  FRE  @0 Elément assimilable @5 29
C03 12  X  ENG  @0 Available nutrient @5 29
C03 12  X  SPA  @0 Elemento asimilable @5 29
C03 13  X  FRE  @0 Relation sol plante @5 30
C03 13  X  ENG  @0 Soil plant relation @5 30
C03 13  X  SPA  @0 Relación suelo planta @5 30
C07 01  X  FRE  @0 Propriété mécanique @5 33
C07 01  X  ENG  @0 Mechanical properties @5 33
C07 01  X  SPA  @0 Propiedad mecánica @5 33
C07 02  X  FRE  @0 Science du sol @5 34
C07 02  X  ENG  @0 Soil science @5 34
C07 02  X  SPA  @0 Ciencia del suelo @5 34
C07 03  X  FRE  @0 Propriété physique @5 35
C07 03  X  ENG  @0 Physical properties @5 35
C07 03  X  SPA  @0 Propiedad física @5 35
C07 04  X  FRE  @0 Propriété physicochimique @5 36
C07 04  X  ENG  @0 Physicochemical properties @5 36
C07 04  X  SPA  @0 Propiedad fisicoquímica @5 36
C07 05  X  FRE  @0 Elément minéral @5 50
C07 05  X  ENG  @0 Inorganic element @5 50
C07 05  X  SPA  @0 Elemento inorgánico @5 50
N21       @1 299
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Rhizosphere 2 Conference @3 Montpellier FRA @4 2007

Format Inist (serveur)

NO : PASCAL 09-0412366 INIST
ET : Rhizosphere: biophysics, biogeochemistry and ecological relevance
AU : HINSINGER (Philippe); GLYN BENGOUGH (A.); VETTERLEIN (Doris); YOUNG (Iain M.); DESSAUX (Yves); HINSINGER (Philippe)
AF : UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala/34060 Montpellier/France (1 aut.); Scottish Crop Research Institute/Dundee DD2 5DA/Royaume-Uni (2 aut.); Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4/06120 Halle/Saale/Allemagne (3 aut.); School of Environmental and Rural Sciences, University of New England/Armidale, NSW 2351/Australie (4 aut.); UPR2355, Institut des Sciences du Végétal, CNRS, Avenue de la terrasse/91198 Gif-sur-Yvette/France (1 aut.); UMR 1222 Eco&Sols Ecologie Fonctionnelle et Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala/34060 Montpellier/France (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Plant and soil; ISSN 0032-079X; Coden PLSOA2; Pays-Bas; Da. 2009; Vol. 321; No. 1-2; Pp. 117-152; Bibl. 9 p.3/4
LA : Anglais
EA : Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.
CC : 002A32B03A1; 002A14; 002A32C02B
FD : Biophysique; Biogéochimie; Ecologie; Résistance mécanique; Mécanique sol; Caractéristique sol; Structure sol; Potentiel hydrique; pH; Rhizosphère; Potentiel oxydoréduction; Elément assimilable; Relation sol plante
FG : Propriété mécanique; Science du sol; Propriété physique; Propriété physicochimique; Elément minéral
ED : Biophysics; Biogeochemistry; Ecology; Strength; Soil mechanics; Property of soil; Soil structure; Water potential; pH; Rhizosphere; Redox potential; Available nutrient; Soil plant relation
EG : Mechanical properties; Soil science; Physical properties; Physicochemical properties; Inorganic element
SD : Biofísica; Biogeoquímica; Ecología; Resistencia mecánica; Mecánica suelo; Característica suelo; Estructura suelo; Potencial hídrico; pH; Rizosfera; Potencial redox; Elemento asimilable; Relación suelo planta
LO : INIST-4772.354000170830320050
ID : 09-0412366

Links to Exploration step

Pascal:09-0412366

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Rhizosphere: biophysics, biogeochemistry and ecological relevance</title>
<author>
<name sortKey="Hinsinger, Philippe" sort="Hinsinger, Philippe" uniqKey="Hinsinger P" first="Philippe" last="Hinsinger">Philippe Hinsinger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glyn Bengough, A" sort="Glyn Bengough, A" uniqKey="Glyn Bengough A" first="A." last="Glyn Bengough">A. Glyn Bengough</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Scottish Crop Research Institute</s1>
<s2>Dundee DD2 5DA</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vetterlein, Doris" sort="Vetterlein, Doris" uniqKey="Vetterlein D" first="Doris" last="Vetterlein">Doris Vetterlein</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4</s1>
<s2>06120 Halle/Saale</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Young, Iain M" sort="Young, Iain M" uniqKey="Young I" first="Iain M." last="Young">Iain M. Young</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Environmental and Rural Sciences, University of New England</s1>
<s2>Armidale, NSW 2351</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0412366</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0412366 INIST</idno>
<idno type="RBID">Pascal:09-0412366</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002B44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Rhizosphere: biophysics, biogeochemistry and ecological relevance</title>
<author>
<name sortKey="Hinsinger, Philippe" sort="Hinsinger, Philippe" uniqKey="Hinsinger P" first="Philippe" last="Hinsinger">Philippe Hinsinger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glyn Bengough, A" sort="Glyn Bengough, A" uniqKey="Glyn Bengough A" first="A." last="Glyn Bengough">A. Glyn Bengough</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Scottish Crop Research Institute</s1>
<s2>Dundee DD2 5DA</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vetterlein, Doris" sort="Vetterlein, Doris" uniqKey="Vetterlein D" first="Doris" last="Vetterlein">Doris Vetterlein</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4</s1>
<s2>06120 Halle/Saale</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Young, Iain M" sort="Young, Iain M" uniqKey="Young I" first="Iain M." last="Young">Iain M. Young</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Environmental and Rural Sciences, University of New England</s1>
<s2>Armidale, NSW 2351</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Available nutrient</term>
<term>Biogeochemistry</term>
<term>Biophysics</term>
<term>Ecology</term>
<term>Property of soil</term>
<term>Redox potential</term>
<term>Rhizosphere</term>
<term>Soil mechanics</term>
<term>Soil plant relation</term>
<term>Soil structure</term>
<term>Strength</term>
<term>Water potential</term>
<term>pH</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Biophysique</term>
<term>Biogéochimie</term>
<term>Ecologie</term>
<term>Résistance mécanique</term>
<term>Mécanique sol</term>
<term>Caractéristique sol</term>
<term>Structure sol</term>
<term>Potentiel hydrique</term>
<term>pH</term>
<term>Rhizosphère</term>
<term>Potentiel oxydoréduction</term>
<term>Elément assimilable</term>
<term>Relation sol plante</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O
<sub>2</sub>
and CO
<sub>2</sub>
, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-079X</s0>
</fA01>
<fA02 i1="01">
<s0>PLSOA2</s0>
</fA02>
<fA03 i2="1">
<s0>Plant soil</s0>
</fA03>
<fA05>
<s2>321</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Rhizosphere: biophysics, biogeochemistry and ecological relevance</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Rhizosphere: achievements and challenges</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HINSINGER (Philippe)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GLYN BENGOUGH (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VETTERLEIN (Doris)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YOUNG (Iain M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DESSAUX (Yves)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HINSINGER (Philippe)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Scottish Crop Research Institute</s1>
<s2>Dundee DD2 5DA</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4</s1>
<s2>06120 Halle/Saale</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Environmental and Rural Sciences, University of New England</s1>
<s2>Armidale, NSW 2351</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>UPR2355, Institut des Sciences du Végétal, CNRS, Avenue de la terrasse</s1>
<s2>91198 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>UMR 1222 Eco&Sols Ecologie Fonctionnelle et Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>117-152</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4772</s2>
<s5>354000170830320050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0412366</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant and soil</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O
<sub>2</sub>
and CO
<sub>2</sub>
, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32B03A1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002A32C02B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Biophysique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Biophysics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Biofísica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Biogéochimie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Biogeochemistry</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Biogeoquímica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ecologie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ecology</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ecología</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Résistance mécanique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Strength</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Resistencia mecánica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanique sol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Soil mechanics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecánica suelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Caractéristique sol</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Property of soil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Característica suelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure sol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Soil structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura suelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Potentiel hydrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Water potential</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Potencial hídrico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>pH</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>pH</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>pH</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rhizosphère</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Rhizosphere</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Rizosfera</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Potentiel oxydoréduction</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Redox potential</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Potencial redox</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Elément assimilable</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Available nutrient</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Elemento asimilable</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>30</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>33</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>33</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>33</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Science du sol</s0>
<s5>34</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Soil science</s0>
<s5>34</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Ciencia del suelo</s0>
<s5>34</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Propriété physique</s0>
<s5>35</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Physical properties</s0>
<s5>35</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Propiedad física</s0>
<s5>35</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Propriété physicochimique</s0>
<s5>36</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Physicochemical properties</s0>
<s5>36</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Propiedad fisicoquímica</s0>
<s5>36</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Elément minéral</s0>
<s5>50</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Inorganic element</s0>
<s5>50</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Elemento inorgánico</s0>
<s5>50</s5>
</fC07>
<fN21>
<s1>299</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Rhizosphere 2 Conference</s1>
<s3>Montpellier FRA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 09-0412366 INIST</NO>
<ET>Rhizosphere: biophysics, biogeochemistry and ecological relevance</ET>
<AU>HINSINGER (Philippe); GLYN BENGOUGH (A.); VETTERLEIN (Doris); YOUNG (Iain M.); DESSAUX (Yves); HINSINGER (Philippe)</AU>
<AF>UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala/34060 Montpellier/France (1 aut.); Scottish Crop Research Institute/Dundee DD2 5DA/Royaume-Uni (2 aut.); Department Soil Physics, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4/06120 Halle/Saale/Allemagne (3 aut.); School of Environmental and Rural Sciences, University of New England/Armidale, NSW 2351/Australie (4 aut.); UPR2355, Institut des Sciences du Végétal, CNRS, Avenue de la terrasse/91198 Gif-sur-Yvette/France (1 aut.); UMR 1222 Eco&Sols Ecologie Fonctionnelle et Biogéochimie des Sols (INRA-IRD-SupAgro), INRA, Place Viala/34060 Montpellier/France (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Plant and soil; ISSN 0032-079X; Coden PLSOA2; Pays-Bas; Da. 2009; Vol. 321; No. 1-2; Pp. 117-152; Bibl. 9 p.3/4</SO>
<LA>Anglais</LA>
<EA>Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O
<sub>2</sub>
and CO
<sub>2</sub>
, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.</EA>
<CC>002A32B03A1; 002A14; 002A32C02B</CC>
<FD>Biophysique; Biogéochimie; Ecologie; Résistance mécanique; Mécanique sol; Caractéristique sol; Structure sol; Potentiel hydrique; pH; Rhizosphère; Potentiel oxydoréduction; Elément assimilable; Relation sol plante</FD>
<FG>Propriété mécanique; Science du sol; Propriété physique; Propriété physicochimique; Elément minéral</FG>
<ED>Biophysics; Biogeochemistry; Ecology; Strength; Soil mechanics; Property of soil; Soil structure; Water potential; pH; Rhizosphere; Redox potential; Available nutrient; Soil plant relation</ED>
<EG>Mechanical properties; Soil science; Physical properties; Physicochemical properties; Inorganic element</EG>
<SD>Biofísica; Biogeoquímica; Ecología; Resistencia mecánica; Mecánica suelo; Característica suelo; Estructura suelo; Potencial hídrico; pH; Rizosfera; Potencial redox; Elemento asimilable; Relación suelo planta</SD>
<LO>INIST-4772.354000170830320050</LO>
<ID>09-0412366</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0412366
   |texte=   Rhizosphere: biophysics, biogeochemistry and ecological relevance
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024