Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?

Identifieur interne : 002803 ( PascalFrancis/Corpus ); précédent : 002802; suivant : 002804

Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?

Auteurs : François Tardieu ; Boris Parent ; Thierry Simonneau

Source :

RBID : Pascal:10-0150810

Descripteurs français

English descriptors

Abstract

Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0140-7791
A02 01      @0 PLCEDV
A03   1    @0 Plant cell environ. : (Print)
A05       @2 33
A06       @2 4
A08 01  1  ENG  @1 Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?
A11 01  1    @1 TARDIEU (François)
A11 02  1    @1 PARENT (Boris)
A11 03  1    @1 SIMONNEAU (Thierry)
A14 01      @1 INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala @2 34060 Montpellier @3 FRA @Z 1 aut. @Z 3 aut.
A14 02      @1 Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1 @2 Glen Osmond, SA 5064 @3 AUS @Z 2 aut.
A20       @1 636-647
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 17987 @5 354000190109180140
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 3 p.3/4
A47 01  1    @0 10-0150810
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant, cell and environment : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.
C02 01  X    @0 002A
C03 01  X  FRE  @0 Croissance @5 01
C03 01  X  ENG  @0 Growth @5 01
C03 01  X  SPA  @0 Crecimiento @5 01
C03 02  X  FRE  @0 Feuille végétal @5 02
C03 02  X  ENG  @0 Plant leaf @5 02
C03 02  X  SPA  @0 Hoja vegetal @5 02
C03 03  X  FRE  @0 Hydraulique @5 03
C03 03  X  ENG  @0 Hydraulics @5 03
C03 03  X  SPA  @0 Hidraúlica @5 03
C03 04  X  FRE  @0 Processus @5 04
C03 04  X  ENG  @0 Process @5 04
C03 04  X  SPA  @0 Proceso @5 04
C03 05  X  FRE  @0 Expansion @5 05
C03 05  X  ENG  @0 Expansion @5 05
C03 05  X  SPA  @0 Expansión @5 05
C03 06  X  FRE  @0 Conductance stomatique @5 06
C03 06  X  ENG  @0 Stomatal conductance @5 06
C03 06  X  SPA  @0 Conductancia estomática @5 06
C03 07  X  FRE  @0 Conductivité hydraulique @5 07
C03 07  X  ENG  @0 Hydraulic conductivity @5 07
C03 07  X  SPA  @0 Conductividad hidráulica @5 07
C03 08  X  FRE  @0 Aquaporine @5 08
C03 08  X  ENG  @0 Aquaporin @5 08
C03 08  X  SPA  @0 Aquaporina @5 08
C03 09  X  FRE  @0 Organisme génétiquement modifié @5 10
C03 09  X  ENG  @0 Genetically modified organism @5 10
C03 09  X  SPA  @0 Organismo modificado genéticamente @5 10
C03 10  X  FRE  @0 Acide abscissique @2 NK @2 FF @5 15
C03 10  X  ENG  @0 Abscisic acid @2 NK @2 FF @5 15
C03 10  X  SPA  @0 Abscísico ácido @2 NK @2 FF @5 15
C03 11  X  FRE  @0 Eau @5 16
C03 11  X  ENG  @0 Water @5 16
C03 11  X  SPA  @0 Agua @5 16
C03 12  X  FRE  @0 <<>> @4 INC @5 68
C03 13  X  FRE  @0 Ecologie végétale @4 CD @5 96
C03 13  X  ENG  @0 Plant ecology @4 CD @5 96
C03 13  X  SPA  @0 Ecología vegetal @4 CD @5 96
C07 01  X  FRE  @0 Sesquiterpène @5 50
C07 01  X  ENG  @0 Sesquiterpenes @5 50
C07 01  X  SPA  @0 Sesquiterpeno @5 50
C07 02  X  FRE  @0 Substance croissance végétal @5 51
C07 02  X  ENG  @0 Plant growth substance @5 51
C07 02  X  SPA  @0 Substancia crecimiento vegetal @5 51
N21       @1 095
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0150810 INIST
ET : Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?
AU : TARDIEU (François); PARENT (Boris); SIMONNEAU (Thierry)
AF : INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala/34060 Montpellier/France (1 aut., 3 aut.); Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1/Glen Osmond, SA 5064/Australie (2 aut.)
DT : Publication en série; Niveau analytique
SO : Plant, cell and environment : (Print); ISSN 0140-7791; Coden PLCEDV; Royaume-Uni; Da. 2010; Vol. 33; No. 4; Pp. 636-647; Bibl. 3 p.3/4
LA : Anglais
EA : Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.
CC : 002A
FD : Croissance; Feuille végétal; Hydraulique; Processus; Expansion; Conductance stomatique; Conductivité hydraulique; Aquaporine; Organisme génétiquement modifié; Acide abscissique; Eau; <<>>; Ecologie végétale
FG : Sesquiterpène; Substance croissance végétal
ED : Growth; Plant leaf; Hydraulics; Process; Expansion; Stomatal conductance; Hydraulic conductivity; Aquaporin; Genetically modified organism; Abscisic acid; Water; Plant ecology
EG : Sesquiterpenes; Plant growth substance
SD : Crecimiento; Hoja vegetal; Hidraúlica; Proceso; Expansión; Conductancia estomática; Conductividad hidráulica; Aquaporina; Organismo modificado genéticamente; Abscísico ácido; Agua; Ecología vegetal
LO : INIST-17987.354000190109180140
ID : 10-0150810

Links to Exploration step

Pascal:10-0150810

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?</title>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parent, Boris" sort="Parent, Boris" uniqKey="Parent B" first="Boris" last="Parent">Boris Parent</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1</s1>
<s2>Glen Osmond, SA 5064</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Simonneau, Thierry" sort="Simonneau, Thierry" uniqKey="Simonneau T" first="Thierry" last="Simonneau">Thierry Simonneau</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0150810</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0150810 INIST</idno>
<idno type="RBID">Pascal:10-0150810</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002803</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?</title>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parent, Boris" sort="Parent, Boris" uniqKey="Parent B" first="Boris" last="Parent">Boris Parent</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1</s1>
<s2>Glen Osmond, SA 5064</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Simonneau, Thierry" sort="Simonneau, Thierry" uniqKey="Simonneau T" first="Thierry" last="Simonneau">Thierry Simonneau</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant, cell and environment : (Print)</title>
<title level="j" type="abbreviated">Plant cell environ. : (Print)</title>
<idno type="ISSN">0140-7791</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant, cell and environment : (Print)</title>
<title level="j" type="abbreviated">Plant cell environ. : (Print)</title>
<idno type="ISSN">0140-7791</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic acid</term>
<term>Aquaporin</term>
<term>Expansion</term>
<term>Genetically modified organism</term>
<term>Growth</term>
<term>Hydraulic conductivity</term>
<term>Hydraulics</term>
<term>Plant ecology</term>
<term>Plant leaf</term>
<term>Process</term>
<term>Stomatal conductance</term>
<term>Water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Croissance</term>
<term>Feuille végétal</term>
<term>Hydraulique</term>
<term>Processus</term>
<term>Expansion</term>
<term>Conductance stomatique</term>
<term>Conductivité hydraulique</term>
<term>Aquaporine</term>
<term>Organisme génétiquement modifié</term>
<term>Acide abscissique</term>
<term>Eau</term>
<term><<>></term>
<term>Ecologie végétale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0140-7791</s0>
</fA01>
<fA02 i1="01">
<s0>PLCEDV</s0>
</fA02>
<fA03 i2="1">
<s0>Plant cell environ. : (Print)</s0>
</fA03>
<fA05>
<s2>33</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TARDIEU (François)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARENT (Boris)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SIMONNEAU (Thierry)</s1>
</fA11>
<fA14 i1="01">
<s1>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1</s1>
<s2>Glen Osmond, SA 5064</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>636-647</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17987</s2>
<s5>354000190109180140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0150810</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant, cell and environment : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hydraulique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hydraulics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hidraúlica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Processus</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Process</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Proceso</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Expansion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Expansion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Expansión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conductance stomatique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Stomatal conductance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conductancia estomática</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conductivité hydraulique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hydraulic conductivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Conductividad hidráulica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Aquaporine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Aquaporin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Aquaporina</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Organisme génétiquement modifié</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Genetically modified organism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Organismo modificado genéticamente</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Acide abscissique</s0>
<s2>NK</s2>
<s2>FF</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Abscisic acid</s0>
<s2>NK</s2>
<s2>FF</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Abscísico ácido</s0>
<s2>NK</s2>
<s2>FF</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Eau</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Water</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Agua</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0><<>></s0>
<s4>INC</s4>
<s5>68</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ecologie végétale</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Plant ecology</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ecología vegetal</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Sesquiterpène</s0>
<s5>50</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Sesquiterpenes</s0>
<s5>50</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Sesquiterpeno</s0>
<s5>50</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Substance croissance végétal</s0>
<s5>51</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Plant growth substance</s0>
<s5>51</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Substancia crecimiento vegetal</s0>
<s5>51</s5>
</fC07>
<fN21>
<s1>095</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0150810 INIST</NO>
<ET>Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?</ET>
<AU>TARDIEU (François); PARENT (Boris); SIMONNEAU (Thierry)</AU>
<AF>INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala/34060 Montpellier/France (1 aut., 3 aut.); Australian Centre for Plant Functional Genomics, Waite Campus, The University of Adelaide, PMB1/Glen Osmond, SA 5064/Australie (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Plant, cell and environment : (Print); ISSN 0140-7791; Coden PLCEDV; Royaume-Uni; Da. 2010; Vol. 33; No. 4; Pp. 636-647; Bibl. 3 p.3/4</SO>
<LA>Anglais</LA>
<EA>Abscisic acid (ABA) affects plant metabolism and water transfers via multiple mechanisms at cell, organ and whole plant levels. These mechanisms translate into contradictory effects on leaf growth, so the literature reports positive, null or negative effects of ABA on leaf growth upon water deficit. We review evidences based on genetic manipulations of ABA biosynthesis, feeding the plant with artificial ABA or partial root drying and provide elements to avoid confusions of effects. We propose that ABA has mainly three effects on growth. (i) Via its controlling effect on stomatal aperture and transpiration rate, an increased concentration of ABA tends to buffer the day-night alternations of leaf growth rate and the negative effect of evaporative demand. (ii) ABA tends to improve leaf growth via an increase in the conductance to water transfer in the plant as a result of increased tissue hydraulic conductivity. (iii) ABA has also a modest non-hydraulic effect which is negative in plants subjected to water deficit, either manipulated for ABA synthesis or fed with artificial ABA, but can be positive in well watered plants deficient of ABA. The overall effect of increasing ABA biosynthesis depends on the relative weight of each of these effects under different environmental scenarios.</EA>
<CC>002A</CC>
<FD>Croissance; Feuille végétal; Hydraulique; Processus; Expansion; Conductance stomatique; Conductivité hydraulique; Aquaporine; Organisme génétiquement modifié; Acide abscissique; Eau; <<>>; Ecologie végétale</FD>
<FG>Sesquiterpène; Substance croissance végétal</FG>
<ED>Growth; Plant leaf; Hydraulics; Process; Expansion; Stomatal conductance; Hydraulic conductivity; Aquaporin; Genetically modified organism; Abscisic acid; Water; Plant ecology</ED>
<EG>Sesquiterpenes; Plant growth substance</EG>
<SD>Crecimiento; Hoja vegetal; Hidraúlica; Proceso; Expansión; Conductancia estomática; Conductividad hidráulica; Aquaporina; Organismo modificado genéticamente; Abscísico ácido; Agua; Ecología vegetal</SD>
<LO>INIST-17987.354000190109180140</LO>
<ID>10-0150810</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002803 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002803 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0150810
   |texte=   Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes?
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024