Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical and experimental studies of the rolling sphere wake

Identifieur interne : 002791 ( PascalFrancis/Corpus ); précédent : 002790; suivant : 002792

Numerical and experimental studies of the rolling sphere wake

Auteurs : B. E. Stewart ; M. C. Thompson ; T. Leweke ; K. Hourigan

Source :

RBID : Pascal:10-0159316

Descripteurs français

English descriptors

Abstract

A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 643
A08 01  1  ENG  @1 Numerical and experimental studies of the rolling sphere wake
A11 01  1    @1 STEWART (B. E.)
A11 02  1    @1 THOMPSON (M. C.)
A11 03  1    @1 LEWEKE (T.)
A11 04  1    @1 HOURIGAN (K.)
A14 01      @1 Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University @2 Melbourne, Victoria 3800 @3 AUS @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146 @2 13384 Marseille @3 FRA @Z 1 aut. @Z 3 aut.
A14 03      @1 Division of Biological Engineering, Monash University @2 Melbourne, Victoria 3800 @3 AUS @Z 4 aut.
A20       @1 137-162
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000189291180060
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 10-0159316
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.
C02 01  3    @0 001B40G27V
C02 02  3    @0 001B40G32F
C03 01  3  FRE  @0 Ecoulement tourbillonnaire @5 02
C03 01  3  ENG  @0 Vortex flow @5 02
C03 02  X  FRE  @0 Détachement tourbillonnaire @5 03
C03 02  X  ENG  @0 Vortex shedding @5 03
C03 02  X  SPA  @0 Desprendimiento vorticial @5 03
C03 03  3  FRE  @0 Sillage @5 08
C03 03  3  ENG  @0 Wakes @5 08
C03 04  X  FRE  @0 Sphère tournante @5 09
C03 04  X  ENG  @0 Rotating sphere @5 09
C03 04  X  SPA  @0 Esfera rotativa @5 09
C03 05  3  FRE  @0 Etude expérimentale @5 15
C03 05  3  ENG  @0 Experimental study @5 15
C03 06  3  FRE  @0 Simulation numérique @5 16
C03 06  3  ENG  @0 Digital simulation @5 16
C03 07  X  FRE  @0 Paroi plane @5 29
C03 07  X  ENG  @0 Plane wall @5 29
C03 07  X  SPA  @0 Pared plana @5 29
C03 08  X  FRE  @0 Coefficient traînée @5 30
C03 08  X  ENG  @0 Drag coefficient @5 30
C03 08  X  SPA  @0 Coeficiente resistencia aerodinámica @5 30
C03 09  3  FRE  @0 Distribution vitesse @5 31
C03 09  3  ENG  @0 Velocity distribution @5 31
C03 10  3  FRE  @0 4727V @4 INC @5 56
C03 11  3  FRE  @0 4732F @4 INC @5 57
N21       @1 102

Format Inist (serveur)

NO : PASCAL 10-0159316 INIST
ET : Numerical and experimental studies of the rolling sphere wake
AU : STEWART (B. E.); THOMPSON (M. C.); LEWEKE (T.); HOURIGAN (K.)
AF : Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, Victoria 3800/Australie (1 aut., 2 aut., 4 aut.); Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146/13384 Marseille/France (1 aut., 3 aut.); Division of Biological Engineering, Monash University/Melbourne, Victoria 3800/Australie (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2010; Vol. 643; Pp. 137-162; Bibl. 1 p.1/2
LA : Anglais
EA : A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.
CC : 001B40G27V; 001B40G32F
FD : Ecoulement tourbillonnaire; Détachement tourbillonnaire; Sillage; Sphère tournante; Etude expérimentale; Simulation numérique; Paroi plane; Coefficient traînée; Distribution vitesse; 4727V; 4732F
ED : Vortex flow; Vortex shedding; Wakes; Rotating sphere; Experimental study; Digital simulation; Plane wall; Drag coefficient; Velocity distribution
SD : Desprendimiento vorticial; Esfera rotativa; Pared plana; Coeficiente resistencia aerodinámica
LO : INIST-5180.354000189291180060
ID : 10-0159316

Links to Exploration step

Pascal:10-0159316

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Numerical and experimental studies of the rolling sphere wake</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0159316</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0159316 INIST</idno>
<idno type="RBID">Pascal:10-0159316</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002791</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Numerical and experimental studies of the rolling sphere wake</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Digital simulation</term>
<term>Drag coefficient</term>
<term>Experimental study</term>
<term>Plane wall</term>
<term>Rotating sphere</term>
<term>Velocity distribution</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement tourbillonnaire</term>
<term>Détachement tourbillonnaire</term>
<term>Sillage</term>
<term>Sphère tournante</term>
<term>Etude expérimentale</term>
<term>Simulation numérique</term>
<term>Paroi plane</term>
<term>Coefficient traînée</term>
<term>Distribution vitesse</term>
<term>4727V</term>
<term>4732F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>643</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Numerical and experimental studies of the rolling sphere wake</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STEWART (B. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>THOMPSON (M. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEWEKE (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOURIGAN (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>137-162</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000189291180060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0159316</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G32F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Sillage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Wakes</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sphère tournante</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Rotating sphere</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Esfera rotativa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Paroi plane</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Plane wall</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pared plana</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Coefficient traînée</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Drag coefficient</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Coeficiente resistencia aerodinámica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Distribution vitesse</s0>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Velocity distribution</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4727V</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>4732F</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>102</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 10-0159316 INIST</NO>
<ET>Numerical and experimental studies of the rolling sphere wake</ET>
<AU>STEWART (B. E.); THOMPSON (M. C.); LEWEKE (T.); HOURIGAN (K.)</AU>
<AF>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, Victoria 3800/Australie (1 aut., 2 aut., 4 aut.); Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146/13384 Marseille/France (1 aut., 3 aut.); Division of Biological Engineering, Monash University/Melbourne, Victoria 3800/Australie (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2010; Vol. 643; Pp. 137-162; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</EA>
<CC>001B40G27V; 001B40G32F</CC>
<FD>Ecoulement tourbillonnaire; Détachement tourbillonnaire; Sillage; Sphère tournante; Etude expérimentale; Simulation numérique; Paroi plane; Coefficient traînée; Distribution vitesse; 4727V; 4732F</FD>
<ED>Vortex flow; Vortex shedding; Wakes; Rotating sphere; Experimental study; Digital simulation; Plane wall; Drag coefficient; Velocity distribution</ED>
<SD>Desprendimiento vorticial; Esfera rotativa; Pared plana; Coeficiente resistencia aerodinámica</SD>
<LO>INIST-5180.354000189291180060</LO>
<ID>10-0159316</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002791 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002791 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0159316
   |texte=   Numerical and experimental studies of the rolling sphere wake
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024