Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY

Identifieur interne : 002615 ( PascalFrancis/Corpus ); précédent : 002614; suivant : 002616

AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY

Auteurs : Phong Q. Nguyen ; Damien Stehle

Source :

RBID : Pascal:10-0286974

Descripteurs français

English descriptors

Abstract

The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L3) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L3 algorithm outputs a reduced basis in O(d3n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L3 algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L3 algorithm is not even guaranteed to terminate, and the output basis may not be L3-reduced at all. In this article, we introduce the L2 algorithm, a new and natural floating-point variant of the L3 algorithm which provably outputs L3-reduced bases in polynomial time O(d2n(d+ log B) log B . M(d)). This is the first L3 algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0097-5397
A03   1    @0 SIAM j. comput. : (Print)
A05       @2 39
A06       @2 3
A08 01  1  ENG  @1 AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY
A11 01  1    @1 NGUYEN (Phong Q.)
A11 02  1    @1 STEHLE (Damien)
A14 01      @1 INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm @2 75005 Paris @3 FRA @Z 1 aut.
A14 02      @1 CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie @2 69364 Lyon @3 FRA @Z 2 aut.
A14 03      @1 ACAC/Department of Computing, Macquarie University @2 Sydney NSW 2109 @3 AUS @Z 2 aut.
A14 04      @1 Department of Mathematics and Statistics, University of Sydney @2 Sydney NSW 2006 @3 AUS @Z 2 aut.
A20       @1 874-903
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 16063 @5 354000170429390040
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 51 ref.
A47 01  1    @0 10-0286974
A60       @1 P
A61       @0 A
A64 01  1    @0 SIAM journal on computing : (Print)
A66 01      @0 USA
C01 01    ENG  @0 The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L3) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L3 algorithm outputs a reduced basis in O(d3n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L3 algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L3 algorithm is not even guaranteed to terminate, and the output basis may not be L3-reduced at all. In this article, we introduce the L2 algorithm, a new and natural floating-point variant of the L3 algorithm which provably outputs L3-reduced bases in polynomial time O(d2n(d+ log B) log B . M(d)). This is the first L3 algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.
C02 01  X    @0 001D02A08
C02 02  X    @0 001D02A05
C02 03  X    @0 001A02B02
C02 04  X    @0 001A02C02
C03 01  X  FRE  @0 Complexité algorithme @5 17
C03 01  X  ENG  @0 Algorithm complexity @5 17
C03 01  X  SPA  @0 Complejidad algoritmo @5 17
C03 02  X  FRE  @0 Treillis @5 18
C03 02  X  ENG  @0 Lattice @5 18
C03 02  X  SPA  @0 Enrejado @5 18
C03 03  X  FRE  @0 Informatique @5 19
C03 03  X  ENG  @0 Computer science @5 19
C03 03  X  SPA  @0 Informática @5 19
C03 04  X  FRE  @0 Algorithmique @5 20
C03 04  X  ENG  @0 Algorithmics @5 20
C03 04  X  SPA  @0 Algorítmica @5 20
C03 05  X  FRE  @0 Réseau arithmétique @5 21
C03 05  X  ENG  @0 Integer lattice @5 21
C03 05  X  SPA  @0 Red aritmética @5 21
C03 06  X  FRE  @0 Vecteur @5 22
C03 06  X  ENG  @0 Vector @5 22
C03 06  X  SPA  @0 Vector @5 22
C03 07  X  FRE  @0 Nombre entier @5 23
C03 07  X  ENG  @0 Integer @5 23
C03 07  X  SPA  @0 Entero @5 23
C03 08  X  FRE  @0 Virgule flottante @5 24
C03 08  X  ENG  @0 Floating point @5 24
C03 08  X  SPA  @0 Coma flotante @5 24
C03 09  X  FRE  @0 Arithmétique @5 25
C03 09  X  ENG  @0 Arithmetics @5 25
C03 09  X  SPA  @0 Aritmética @5 25
C03 10  X  FRE  @0 Temps polynomial @5 26
C03 10  X  ENG  @0 Polynomial time @5 26
C03 10  X  SPA  @0 Tiempo polinomial @5 26
C03 11  3  FRE  @0 Calcul 2 dimensions @5 27
C03 11  3  ENG  @0 Two-dimensional calculations @5 27
C03 12  X  FRE  @0 06Bxx @4 INC @5 70
C03 13  X  FRE  @0 Algorithme réduction @4 INC @5 71
C03 14  X  FRE  @0 11Yxx @4 INC @5 72
C03 15  X  FRE  @0 68XX @4 INC @5 73
C03 16  X  FRE  @0 68Wxx @4 INC @5 74
C03 17  X  FRE  @0 Pire cas @4 INC @5 75
C03 18  X  FRE  @0 65F25 @4 INC @5 76
C03 19  X  FRE  @0 PGCD @4 INC @5 77
C03 20  X  FRE  @0 Algorithme QR @4 CD @5 96
C03 20  X  ENG  @0 OR algorithm @4 CD @5 96
N21       @1 186
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0286974 INIST
ET : AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY
AU : NGUYEN (Phong Q.); STEHLE (Damien)
AF : INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm/75005 Paris/France (1 aut.); CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie/69364 Lyon/France (2 aut.); ACAC/Department of Computing, Macquarie University/Sydney NSW 2109/Australie (2 aut.); Department of Mathematics and Statistics, University of Sydney/Sydney NSW 2006/Australie (2 aut.)
DT : Publication en série; Niveau analytique
SO : SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2010; Vol. 39; No. 3; Pp. 874-903; Bibl. 51 ref.
LA : Anglais
EA : The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L3) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L3 algorithm outputs a reduced basis in O(d3n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L3 algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L3 algorithm is not even guaranteed to terminate, and the output basis may not be L3-reduced at all. In this article, we introduce the L2 algorithm, a new and natural floating-point variant of the L3 algorithm which provably outputs L3-reduced bases in polynomial time O(d2n(d+ log B) log B . M(d)). This is the first L3 algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.
CC : 001D02A08; 001D02A05; 001A02B02; 001A02C02
FD : Complexité algorithme; Treillis; Informatique; Algorithmique; Réseau arithmétique; Vecteur; Nombre entier; Virgule flottante; Arithmétique; Temps polynomial; Calcul 2 dimensions; 06Bxx; Algorithme réduction; 11Yxx; 68XX; 68Wxx; Pire cas; 65F25; PGCD; Algorithme QR
ED : Algorithm complexity; Lattice; Computer science; Algorithmics; Integer lattice; Vector; Integer; Floating point; Arithmetics; Polynomial time; Two-dimensional calculations; OR algorithm
SD : Complejidad algoritmo; Enrejado; Informática; Algorítmica; Red aritmética; Vector; Entero; Coma flotante; Aritmética; Tiempo polinomial
LO : INIST-16063.354000170429390040
ID : 10-0286974

Links to Exploration step

Pascal:10-0286974

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie</s1>
<s2>69364 Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>ACAC/Department of Computing, Macquarie University</s1>
<s2>Sydney NSW 2109</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Mathematics and Statistics, University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0286974</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0286974 INIST</idno>
<idno type="RBID">Pascal:10-0286974</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002615</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie</s1>
<s2>69364 Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>ACAC/Department of Computing, Macquarie University</s1>
<s2>Sydney NSW 2109</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Mathematics and Statistics, University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm complexity</term>
<term>Algorithmics</term>
<term>Arithmetics</term>
<term>Computer science</term>
<term>Floating point</term>
<term>Integer</term>
<term>Integer lattice</term>
<term>Lattice</term>
<term>OR algorithm</term>
<term>Polynomial time</term>
<term>Two-dimensional calculations</term>
<term>Vector</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Complexité algorithme</term>
<term>Treillis</term>
<term>Informatique</term>
<term>Algorithmique</term>
<term>Réseau arithmétique</term>
<term>Vecteur</term>
<term>Nombre entier</term>
<term>Virgule flottante</term>
<term>Arithmétique</term>
<term>Temps polynomial</term>
<term>Calcul 2 dimensions</term>
<term>06Bxx</term>
<term>Algorithme réduction</term>
<term>11Yxx</term>
<term>68XX</term>
<term>68Wxx</term>
<term>Pire cas</term>
<term>65F25</term>
<term>PGCD</term>
<term>Algorithme QR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L
<sup>3</sup>
) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L
<sup>3</sup>
algorithm outputs a reduced basis in O(d
<sup>3</sup>
n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L
<sup>3</sup>
algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L
<sup>3</sup>
algorithm is not even guaranteed to terminate, and the output basis may not be L
<sup>3</sup>
-reduced at all. In this article, we introduce the L
<sup>2</sup>
algorithm, a new and natural floating-point variant of the L
<sup>3</sup>
algorithm which provably outputs L
<sup>3</sup>
-reduced bases in polynomial time O(d
<sup>2</sup>
n(d+ log B) log B . M(d)). This is the first L
<sup>3</sup>
algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0097-5397</s0>
</fA01>
<fA03 i2="1">
<s0>SIAM j. comput. : (Print)</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NGUYEN (Phong Q.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STEHLE (Damien)</s1>
</fA11>
<fA14 i1="01">
<s1>INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie</s1>
<s2>69364 Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>ACAC/Department of Computing, Macquarie University</s1>
<s2>Sydney NSW 2109</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Mathematics and Statistics, University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>874-903</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16063</s2>
<s5>354000170429390040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0286974</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SIAM journal on computing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L
<sup>3</sup>
) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L
<sup>3</sup>
algorithm outputs a reduced basis in O(d
<sup>3</sup>
n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L
<sup>3</sup>
algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L
<sup>3</sup>
algorithm is not even guaranteed to terminate, and the output basis may not be L
<sup>3</sup>
-reduced at all. In this article, we introduce the L
<sup>2</sup>
algorithm, a new and natural floating-point variant of the L
<sup>3</sup>
algorithm which provably outputs L
<sup>3</sup>
-reduced bases in polynomial time O(d
<sup>2</sup>
n(d+ log B) log B . M(d)). This is the first L
<sup>3</sup>
algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02B02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001A02C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Complexité algorithme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Algorithm complexity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Complejidad algoritmo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Treillis</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Lattice</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Enrejado</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Informatique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Computer science</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Informática</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Algorithmique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Algorithmics</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Algorítmica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réseau arithmétique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Integer lattice</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Red aritmética</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Vecteur</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Vector</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Vector</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nombre entier</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Integer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Entero</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Virgule flottante</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Floating point</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Coma flotante</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Arithmétique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Arithmetics</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aritmética</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Temps polynomial</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Polynomial time</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tiempo polinomial</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Calcul 2 dimensions</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Two-dimensional calculations</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>06Bxx</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Algorithme réduction</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>11Yxx</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>68XX</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>68Wxx</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Pire cas</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>65F25</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>PGCD</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Algorithme QR</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>OR algorithm</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>186</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0286974 INIST</NO>
<ET>AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY</ET>
<AU>NGUYEN (Phong Q.); STEHLE (Damien)</AU>
<AF>INRIA & Ecole normale supérieure, DI, 45 rue d'Ulm/75005 Paris/France (1 aut.); CNRS & Ecole normale supérieure de Lyon/LIP/INRIA Arenaire/Université de Lyon, 46 allée d'Italie/69364 Lyon/France (2 aut.); ACAC/Department of Computing, Macquarie University/Sydney NSW 2109/Australie (2 aut.); Department of Mathematics and Statistics, University of Sydney/Sydney NSW 2006/Australie (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2010; Vol. 39; No. 3; Pp. 874-903; Bibl. 51 ref.</SO>
<LA>Anglais</LA>
<EA>The Lenstra-Lenstra-Lovàsz lattice basis reduction algorithm (called LLL or L
<sup>3</sup>
) is a fundamental tool in computational number theory and theoretical computer science, which can be viewed as an efficient algorithmic version of Hermite's inequality on Hermite's constant. Given an integer d-dimensional lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L
<sup>3</sup>
algorithm outputs a reduced basis in O(d
<sup>3</sup>
n log B . M(d log B)) bit operations, where M(k) denotes the time required to multiply k-bit integers. This worst-case complexity is problematic for applications where d or/and log B are often large. As a result, the original L
<sup>3</sup>
algorithm is almost never used in practice, except in tiny dimension. Instead, one applies floating-point variants where the long-integer arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic. Unfortunately, this is known to be unstable in the worst case: the usual floating-point L
<sup>3</sup>
algorithm is not even guaranteed to terminate, and the output basis may not be L
<sup>3</sup>
-reduced at all. In this article, we introduce the L
<sup>2</sup>
algorithm, a new and natural floating-point variant of the L
<sup>3</sup>
algorithm which provably outputs L
<sup>3</sup>
-reduced bases in polynomial time O(d
<sup>2</sup>
n(d+ log B) log B . M(d)). This is the first L
<sup>3</sup>
algorithm whose running time (without fast integer arithmetic) provably grows only quadratically with respect to log B, like Euclid's gcd algorithm and Lagrange's two-dimensional algorithm.</EA>
<CC>001D02A08; 001D02A05; 001A02B02; 001A02C02</CC>
<FD>Complexité algorithme; Treillis; Informatique; Algorithmique; Réseau arithmétique; Vecteur; Nombre entier; Virgule flottante; Arithmétique; Temps polynomial; Calcul 2 dimensions; 06Bxx; Algorithme réduction; 11Yxx; 68XX; 68Wxx; Pire cas; 65F25; PGCD; Algorithme QR</FD>
<ED>Algorithm complexity; Lattice; Computer science; Algorithmics; Integer lattice; Vector; Integer; Floating point; Arithmetics; Polynomial time; Two-dimensional calculations; OR algorithm</ED>
<SD>Complejidad algoritmo; Enrejado; Informática; Algorítmica; Red aritmética; Vector; Entero; Coma flotante; Aritmética; Tiempo polinomial</SD>
<LO>INIST-16063.354000170429390040</LO>
<ID>10-0286974</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002615 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002615 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0286974
   |texte=   AN LLL ALGORITHM WITH QUADRATIC COMPLEXITY
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024