Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectroscopic investigations of a Ti: Tm: LiNbO3 waveguide for photon-echo quantum memory

Identifieur interne : 002497 ( PascalFrancis/Corpus ); précédent : 002496; suivant : 002498

Spectroscopic investigations of a Ti: Tm: LiNbO3 waveguide for photon-echo quantum memory

Auteurs : N. Sinclair ; E. Saglamyurek ; M. George ; R. Ricken ; C. La Mela ; W. Sohler ; W. Tittel

Source :

RBID : Pascal:10-0354983

Descripteurs français

English descriptors

Abstract

We report the fabrication and characterization of a Ti4+:Tm3+: LiNbO3 optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm3+ ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm3+ ions, we found radiative lifetimes of 82 μs and 2.4 ms for the 3H4 and 3F4 levels, respectively, and a 44% branching ratio from the 3H4 to the 3F4 level. We also measured an optical coherence time of 1.6 μs for the 3H63H4, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-2313
A02 01      @0 JLUMA8
A03   1    @0 J. lumin.
A05       @2 130
A06       @2 9
A08 01  1  ENG  @1 Spectroscopic investigations of a Ti: Tm: LiNbO3 waveguide for photon-echo quantum memory
A09 01  1  ENG  @1 Special Issue based on the Proceedings of the Tenth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009), Palm cove, Australia, June 22-27, 2009. Issue dedicated to Ivan Lorgeré and Oliver Guillot-Noël
A11 01  1    @1 SINCLAIR (N.)
A11 02  1    @1 SAGLAMYUREK (E.)
A11 03  1    @1 GEORGE (M.)
A11 04  1    @1 RICKEN (R.)
A11 05  1    @1 LA MELA (C.)
A11 06  1    @1 SOHLER (W.)
A11 07  1    @1 TITTEL (W.)
A12 01  1    @1 CHANELIERE (Thierry) @9 ed.
A12 02  1    @1 SELLARS (Matt J.) @9 ed.
A12 03  1    @1 MANSON (Neil B.) @9 ed.
A14 01      @1 Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary @2 Calgary, Alberta, T2N 1N4 @3 CAN @Z 1 aut. @Z 2 aut. @Z 5 aut. @Z 7 aut.
A14 02      @1 Angewandte Physik, Universität Paderborn @2 33098 Paderborn @3 DEU @Z 3 aut. @Z 4 aut. @Z 6 aut.
A15 01      @1 Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505 @2 91405 Orsay @3 FRA @Z 1 aut.
A15 02      @1 Laser Physics Centre, Research School of Physics and Engineering, The Australian National University @2 Canberra, ACT 0200 @3 AUS @Z 2 aut. @Z 3 aut.
A20       @1 1586-1593
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 14666 @5 354000193752120050
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 85 ref.
A47 01  1    @0 10-0354983
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of luminescence
A66 01      @0 NLD
C01 01    ENG  @0 We report the fabrication and characterization of a Ti4+:Tm3+: LiNbO3 optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm3+ ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm3+ ions, we found radiative lifetimes of 82 μs and 2.4 ms for the 3H4 and 3F4 levels, respectively, and a 44% branching ratio from the 3H4 to the 3F4 level. We also measured an optical coherence time of 1.6 μs for the 3H63H4, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.
C02 01  3    @0 001B40B79G
C02 02  3    @0 001B40B50M
C02 03  3    @0 001B00C67H
C03 01  3  FRE  @0 Echo photon @5 03
C03 01  3  ENG  @0 Photon echo @5 03
C03 02  3  FRE  @0 Hole burning @5 04
C03 02  3  ENG  @0 Hole burning @5 04
C03 03  3  FRE  @0 Effet Stark @5 05
C03 03  3  ENG  @0 Stark effect @5 05
C03 04  3  FRE  @0 Guide onde optique @5 11
C03 04  3  ENG  @0 Optical waveguides @5 11
C03 05  3  FRE  @0 Guide onde @5 12
C03 05  3  ENG  @0 Waveguides @5 12
C03 06  3  FRE  @0 Optique quantique @5 17
C03 06  3  ENG  @0 Quantum optics @5 17
C03 07  3  FRE  @0 Optique intégrée @5 19
C03 07  3  ENG  @0 Integrated optics @5 19
C03 08  3  FRE  @0 Communication quantique @5 20
C03 08  3  ENG  @0 Quantum communication @5 20
C03 09  X  FRE  @0 Température cryogénique @5 41
C03 09  X  ENG  @0 Cryogenic temperature @5 41
C03 09  X  SPA  @0 Temperatura criogénica @5 41
C03 10  3  FRE  @0 Durée vie radiative @5 42
C03 10  3  ENG  @0 Radiative lifetimes @5 42
C03 11  3  FRE  @0 Rapport branchement @5 43
C03 11  3  ENG  @0 Branching ratio @5 43
C03 12  3  FRE  @0 Durée vie @5 44
C03 12  3  ENG  @0 Lifetime @5 44
C03 13  3  FRE  @0 Composé ternaire @5 50
C03 13  3  ENG  @0 Ternary compounds @5 50
C03 14  X  FRE  @0 Matériau non linéaire @5 51
C03 14  X  ENG  @0 Non linear material @5 51
C03 14  X  SPA  @0 Material no lineal @5 51
C03 15  3  FRE  @0 Matériau optique @5 52
C03 15  3  ENG  @0 Optical materials @5 52
C03 16  X  FRE  @0 Ion lanthanide @5 61
C03 16  X  ENG  @0 Lanthanide ion @5 61
C03 16  X  SPA  @0 Lantánido ión @5 61
C03 17  3  FRE  @0 Lithium Niobate @2 NC @2 NA @5 62
C03 17  3  ENG  @0 Lithium Niobates @2 NC @2 NA @5 62
C03 18  3  FRE  @0 LiNbO3 @4 INC @5 71
C03 19  3  FRE  @0 Li Nb O @4 INC @5 75
C03 20  3  FRE  @0 4279G @4 INC @5 91
C03 21  3  FRE  @0 4250M @4 INC @5 92
C03 22  3  FRE  @0 0367H @4 INC @5 93
C03 23  3  FRE  @0 Mémoire quantique @4 CD @5 96
C03 23  3  ENG  @0 Quantum memory @4 CD @5 96
N21       @1 228
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009) @2 10 @3 Palm Cove AUS @4 2009-06-22

Format Inist (serveur)

NO : PASCAL 10-0354983 INIST
ET : Spectroscopic investigations of a Ti: Tm: LiNbO3 waveguide for photon-echo quantum memory
AU : SINCLAIR (N.); SAGLAMYUREK (E.); GEORGE (M.); RICKEN (R.); LA MELA (C.); SOHLER (W.); TITTEL (W.); CHANELIERE (Thierry); SELLARS (Matt J.); MANSON (Neil B.)
AF : Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary/Calgary, Alberta, T2N 1N4/Canada (1 aut., 2 aut., 5 aut., 7 aut.); Angewandte Physik, Universität Paderborn/33098 Paderborn/Allemagne (3 aut., 4 aut., 6 aut.); Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505/91405 Orsay/France (1 aut.); Laser Physics Centre, Research School of Physics and Engineering, The Australian National University/Canberra, ACT 0200/Australie (2 aut., 3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2010; Vol. 130; No. 9; Pp. 1586-1593; Bibl. 85 ref.
LA : Anglais
EA : We report the fabrication and characterization of a Ti4+:Tm3+: LiNbO3 optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm3+ ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm3+ ions, we found radiative lifetimes of 82 μs and 2.4 ms for the 3H4 and 3F4 levels, respectively, and a 44% branching ratio from the 3H4 to the 3F4 level. We also measured an optical coherence time of 1.6 μs for the 3H63H4, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.
CC : 001B40B79G; 001B40B50M; 001B00C67H
FD : Echo photon; Hole burning; Effet Stark; Guide onde optique; Guide onde; Optique quantique; Optique intégrée; Communication quantique; Température cryogénique; Durée vie radiative; Rapport branchement; Durée vie; Composé ternaire; Matériau non linéaire; Matériau optique; Ion lanthanide; Lithium Niobate; LiNbO3; Li Nb O; 4279G; 4250M; 0367H; Mémoire quantique
ED : Photon echo; Hole burning; Stark effect; Optical waveguides; Waveguides; Quantum optics; Integrated optics; Quantum communication; Cryogenic temperature; Radiative lifetimes; Branching ratio; Lifetime; Ternary compounds; Non linear material; Optical materials; Lanthanide ion; Lithium Niobates; Quantum memory
SD : Temperatura criogénica; Material no lineal; Lantánido ión
LO : INIST-14666.354000193752120050
ID : 10-0354983

Links to Exploration step

Pascal:10-0354983

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spectroscopic investigations of a Ti: Tm: LiNbO
<sub>3</sub>
waveguide for photon-echo quantum memory</title>
<author>
<name sortKey="Sinclair, N" sort="Sinclair, N" uniqKey="Sinclair N" first="N." last="Sinclair">N. Sinclair</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saglamyurek, E" sort="Saglamyurek, E" uniqKey="Saglamyurek E" first="E." last="Saglamyurek">E. Saglamyurek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="George, M" sort="George, M" uniqKey="George M" first="M." last="George">M. George</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ricken, R" sort="Ricken, R" uniqKey="Ricken R" first="R." last="Ricken">R. Ricken</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="La Mela, C" sort="La Mela, C" uniqKey="La Mela C" first="C." last="La Mela">C. La Mela</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sohler, W" sort="Sohler, W" uniqKey="Sohler W" first="W." last="Sohler">W. Sohler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tittel, W" sort="Tittel, W" uniqKey="Tittel W" first="W." last="Tittel">W. Tittel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0354983</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0354983 INIST</idno>
<idno type="RBID">Pascal:10-0354983</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spectroscopic investigations of a Ti: Tm: LiNbO
<sub>3</sub>
waveguide for photon-echo quantum memory</title>
<author>
<name sortKey="Sinclair, N" sort="Sinclair, N" uniqKey="Sinclair N" first="N." last="Sinclair">N. Sinclair</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saglamyurek, E" sort="Saglamyurek, E" uniqKey="Saglamyurek E" first="E." last="Saglamyurek">E. Saglamyurek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="George, M" sort="George, M" uniqKey="George M" first="M." last="George">M. George</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ricken, R" sort="Ricken, R" uniqKey="Ricken R" first="R." last="Ricken">R. Ricken</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="La Mela, C" sort="La Mela, C" uniqKey="La Mela C" first="C." last="La Mela">C. La Mela</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sohler, W" sort="Sohler, W" uniqKey="Sohler W" first="W." last="Sohler">W. Sohler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tittel, W" sort="Tittel, W" uniqKey="Tittel W" first="W." last="Tittel">W. Tittel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Branching ratio</term>
<term>Cryogenic temperature</term>
<term>Hole burning</term>
<term>Integrated optics</term>
<term>Lanthanide ion</term>
<term>Lifetime</term>
<term>Lithium Niobates</term>
<term>Non linear material</term>
<term>Optical materials</term>
<term>Optical waveguides</term>
<term>Photon echo</term>
<term>Quantum communication</term>
<term>Quantum memory</term>
<term>Quantum optics</term>
<term>Radiative lifetimes</term>
<term>Stark effect</term>
<term>Ternary compounds</term>
<term>Waveguides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Echo photon</term>
<term>Hole burning</term>
<term>Effet Stark</term>
<term>Guide onde optique</term>
<term>Guide onde</term>
<term>Optique quantique</term>
<term>Optique intégrée</term>
<term>Communication quantique</term>
<term>Température cryogénique</term>
<term>Durée vie radiative</term>
<term>Rapport branchement</term>
<term>Durée vie</term>
<term>Composé ternaire</term>
<term>Matériau non linéaire</term>
<term>Matériau optique</term>
<term>Ion lanthanide</term>
<term>Lithium Niobate</term>
<term>LiNbO3</term>
<term>Li Nb O</term>
<term>4279G</term>
<term>4250M</term>
<term>0367H</term>
<term>Mémoire quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the fabrication and characterization of a Ti
<sup>4+</sup>
:Tm
<sup>3+</sup>
: LiNbO
<sub>3</sub>
optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm
<sup>3+</sup>
ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm
<sup>3+</sup>
ions, we found radiative lifetimes of 82 μs and 2.4 ms for the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>3</sup>
F
<sub>4</sub>
levels, respectively, and a 44% branching ratio from the
<sup>3</sup>
H
<sub>4</sub>
to the
<sup>3</sup>
F
<sub>4</sub>
level. We also measured an optical coherence time of 1.6 μs for the
<sup>3</sup>
H
<sub>6</sub>
<sup>3</sup>
H
<sub>4</sub>
, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>130</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spectroscopic investigations of a Ti: Tm: LiNbO
<sub>3</sub>
waveguide for photon-echo quantum memory</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue based on the Proceedings of the Tenth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009), Palm cove, Australia, June 22-27, 2009. Issue dedicated to Ivan Lorgeré and Oliver Guillot-Noël</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SINCLAIR (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SAGLAMYUREK (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GEORGE (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RICKEN (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LA MELA (C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SOHLER (W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TITTEL (W.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CHANELIERE (Thierry)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SELLARS (Matt J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MANSON (Neil B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary</s1>
<s2>Calgary, Alberta, T2N 1N4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Angewandte Physik, Universität Paderborn</s1>
<s2>33098 Paderborn</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Laser Physics Centre, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>1586-1593</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000193752120050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>85 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0354983</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report the fabrication and characterization of a Ti
<sup>4+</sup>
:Tm
<sup>3+</sup>
: LiNbO
<sub>3</sub>
optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm
<sup>3+</sup>
ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm
<sup>3+</sup>
ions, we found radiative lifetimes of 82 μs and 2.4 ms for the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>3</sup>
F
<sub>4</sub>
levels, respectively, and a 44% branching ratio from the
<sup>3</sup>
H
<sub>4</sub>
to the
<sup>3</sup>
F
<sub>4</sub>
level. We also measured an optical coherence time of 1.6 μs for the
<sup>3</sup>
H
<sub>6</sub>
<sup>3</sup>
H
<sub>4</sub>
, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B79G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B50M</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00C67H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Echo photon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photon echo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Hole burning</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Hole burning</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet Stark</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Stark effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Guide onde optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical waveguides</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Guide onde</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Waveguides</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Optique quantique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum optics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Optique intégrée</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Integrated optics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Communication quantique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum communication</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Température cryogénique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Cryogenic temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Temperatura criogénica</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Durée vie radiative</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Radiative lifetimes</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Rapport branchement</s0>
<s5>43</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Branching ratio</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Durée vie</s0>
<s5>44</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lifetime</s0>
<s5>44</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Matériau non linéaire</s0>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Non linear material</s0>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Material no lineal</s0>
<s5>51</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ion lanthanide</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Lanthanide ion</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Lantánido ión</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Lithium Niobate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Lithium Niobates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>LiNbO3</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Li Nb O</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>4279G</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4250M</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>0367H</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Mémoire quantique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Quantum memory</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>228</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009)</s1>
<s2>10</s2>
<s3>Palm Cove AUS</s3>
<s4>2009-06-22</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 10-0354983 INIST</NO>
<ET>Spectroscopic investigations of a Ti: Tm: LiNbO
<sub>3</sub>
waveguide for photon-echo quantum memory</ET>
<AU>SINCLAIR (N.); SAGLAMYUREK (E.); GEORGE (M.); RICKEN (R.); LA MELA (C.); SOHLER (W.); TITTEL (W.); CHANELIERE (Thierry); SELLARS (Matt J.); MANSON (Neil B.)</AU>
<AF>Institute for Quantum Information Science and Department of Physics & Astronomy, University of Calgary/Calgary, Alberta, T2N 1N4/Canada (1 aut., 2 aut., 5 aut., 7 aut.); Angewandte Physik, Universität Paderborn/33098 Paderborn/Allemagne (3 aut., 4 aut., 6 aut.); Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505/91405 Orsay/France (1 aut.); Laser Physics Centre, Research School of Physics and Engineering, The Australian National University/Canberra, ACT 0200/Australie (2 aut., 3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2010; Vol. 130; No. 9; Pp. 1586-1593; Bibl. 85 ref.</SO>
<LA>Anglais</LA>
<EA>We report the fabrication and characterization of a Ti
<sup>4+</sup>
:Tm
<sup>3+</sup>
: LiNbO
<sub>3</sub>
optical waveguide in view of photon-echo quantum memory applications. Specifically, we investigated room- and cryogenic-temperature properties of the waveguide, and the Tm
<sup>3+</sup>
ions, via absorption, spectral hole burning, photon echo, and Stark spectroscopy. For the Tm
<sup>3+</sup>
ions, we found radiative lifetimes of 82 μs and 2.4 ms for the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>3</sup>
F
<sub>4</sub>
levels, respectively, and a 44% branching ratio from the
<sup>3</sup>
H
<sub>4</sub>
to the
<sup>3</sup>
F
<sub>4</sub>
level. We also measured an optical coherence time of 1.6 μs for the
<sup>3</sup>
H
<sub>6</sub>
<sup>3</sup>
H
<sub>4</sub>
, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.</EA>
<CC>001B40B79G; 001B40B50M; 001B00C67H</CC>
<FD>Echo photon; Hole burning; Effet Stark; Guide onde optique; Guide onde; Optique quantique; Optique intégrée; Communication quantique; Température cryogénique; Durée vie radiative; Rapport branchement; Durée vie; Composé ternaire; Matériau non linéaire; Matériau optique; Ion lanthanide; Lithium Niobate; LiNbO3; Li Nb O; 4279G; 4250M; 0367H; Mémoire quantique</FD>
<ED>Photon echo; Hole burning; Stark effect; Optical waveguides; Waveguides; Quantum optics; Integrated optics; Quantum communication; Cryogenic temperature; Radiative lifetimes; Branching ratio; Lifetime; Ternary compounds; Non linear material; Optical materials; Lanthanide ion; Lithium Niobates; Quantum memory</ED>
<SD>Temperatura criogénica; Material no lineal; Lantánido ión</SD>
<LO>INIST-14666.354000193752120050</LO>
<ID>10-0354983</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002497 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002497 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0354983
   |texte=   Spectroscopic investigations of a Ti: Tm: LiNbO3 waveguide for photon-echo quantum memory
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024