Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials

Identifieur interne : 002251 ( PascalFrancis/Corpus ); précédent : 002250; suivant : 002252

Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials

Auteurs : D. Fuertes Marron ; E. Canovas ; M. Y. Levy ; A. Marti ; A. Luque ; M. Afshar ; J. Albert ; S. Lehmann ; D. Abou-Ras ; S. Sadewasser ; N. Barreau

Source :

RBID : Pascal:10-0514933

Descripteurs français

English descriptors

Abstract

Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg= 1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg∼1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0927-0248
A03   1    @0 Sol. energy mater. sol. cells
A05       @2 94
A06       @2 11
A08 01  1  ENG  @1 Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials
A09 01  1  ENG  @1 Inorganic and Nanostructured Photovoltaics (EMRS B)
A11 01  1    @1 FUERTES MARRON (D.)
A11 02  1    @1 CANOVAS (E.)
A11 03  1    @1 LEVY (M. Y.)
A11 04  1    @1 MARTI (A.)
A11 05  1    @1 LUQUE (A.)
A11 06  1    @1 AFSHAR (M.)
A11 07  1    @1 ALBERT (J.)
A11 08  1    @1 LEHMANN (S.)
A11 09  1    @1 ABOU-RAS (D.)
A11 10  1    @1 SADEWASSER (S.)
A11 11  1    @1 BARREAU (N.)
A12 01  1    @1 CONIBEER (Gavin) @9 ed.
A12 02  1    @1 SCHROPP (Ruud E. I.) @9 ed.
A12 03  1    @1 MELLIKOV (Enn) @9 ed.
A12 04  1    @1 TOPIC (Marko) @9 ed.
A12 05  1    @1 BEAUCARNE (Guy) @9 ed.
A14 01      @1 Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n @2 28040 Madrid @3 ESP @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100 @2 14109 Berlin @3 DEU @Z 6 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut. @Z 10 aut.
A14 03      @1 Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229 @2 44322 Nantes @3 FRA @Z 11 aut.
A15 01      @1 ARC Photovoltaics Centre of Excellence, University of New South Wales @2 Sydney 2052 @3 AUS @Z 1 aut.
A15 02      @1 Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000 @2 3508 TA Utrecht @3 NLD @Z 2 aut.
A15 03      @1 Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5 @2 Tallinn 19086 @3 EST @Z 3 aut.
A15 04      @1 IMEC, Kapeldreef 75 @2 3001 Leuven @3 BEL @Z 5 aut.
A20       @1 1912-1918
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 18016 @5 354000191328110140
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 10-0514933
A60       @1 P
A61       @0 A
A64 01  1    @0 Solar energy materials and solar cells
A66 01      @0 NLD
C01 01    ENG  @0 Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg= 1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg∼1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
C02 01  X    @0 001D06C02D1
C02 02  X    @0 001D03C
C02 03  X    @0 230
C03 01  X  FRE  @0 Propriété optoélectronique @5 01
C03 01  X  ENG  @0 Optoelectronic properties @5 01
C03 01  X  SPA  @0 Propiedad optoelectrónica @5 01
C03 02  X  FRE  @0 Nanostructure @5 02
C03 02  X  ENG  @0 Nanostructure @5 02
C03 02  X  SPA  @0 Nanoestructura @5 02
C03 03  X  FRE  @0 Dispositif photovoltaïque @5 03
C03 03  X  ENG  @0 Photovoltaic cell @5 03
C03 03  X  SPA  @0 Dispositivo fotovoltaico @5 03
C03 04  3  FRE  @0 Photoréflectance @5 04
C03 04  3  ENG  @0 Photoreflectance @5 04
C03 05  X  FRE  @0 Diffusion mutuelle @5 05
C03 05  X  ENG  @0 Interdiffusion @5 05
C03 05  X  SPA  @0 Difusión mútua @5 05
C03 06  X  FRE  @0 Défaut @5 06
C03 06  X  ENG  @0 Defect @5 06
C03 06  X  SPA  @0 Defecto @5 06
C03 07  X  FRE  @0 Structure électronique @5 07
C03 07  X  ENG  @0 Electronic structure @5 07
C03 07  X  SPA  @0 Estructura electrónica @5 07
C03 08  X  FRE  @0 Confinement @5 08
C03 08  X  ENG  @0 Confinement @5 08
C03 08  X  SPA  @0 Confinamiento @5 08
C03 09  X  FRE  @0 Bande valence @5 10
C03 09  X  ENG  @0 Valence band @5 10
C03 09  X  SPA  @0 Banda valencia @5 10
C03 10  X  FRE  @0 Structure bande @5 11
C03 10  X  ENG  @0 Band structure @5 11
C03 10  X  SPA  @0 Estructura banda @5 11
C03 11  X  FRE  @0 Etat natif @5 13
C03 11  X  ENG  @0 Native state @5 13
C03 11  X  SPA  @0 Estado nativo @5 13
C03 12  3  FRE  @0 Structure défaut @5 14
C03 12  3  ENG  @0 Defect structure @5 14
C03 13  X  FRE  @0 Cellule solaire @5 15
C03 13  X  ENG  @0 Solar cell @5 15
C03 13  X  SPA  @0 Célula solar @5 15
C03 14  X  FRE  @0 Chalcopyrite @5 22
C03 14  X  ENG  @0 Chalcopyrite @5 22
C03 14  X  SPA  @0 Calcopirita @5 22
C03 15  3  FRE  @0 Nanomatériau @5 23
C03 15  3  ENG  @0 Nanostructured materials @5 23
C03 16  X  FRE  @0 Couche mince @5 24
C03 16  X  ENG  @0 Thin film @5 24
C03 16  X  SPA  @0 Capa fina @5 24
C03 17  X  FRE  @0 Composé ternaire @5 25
C03 17  X  ENG  @0 Ternary compound @5 25
C03 17  X  SPA  @0 Compuesto ternario @5 25
C03 18  3  FRE  @0 Séléniure de cuivre @2 NK @5 26
C03 18  3  ENG  @0 Copper selenides @2 NK @5 26
C03 19  3  FRE  @0 Séléniure d'indium @2 NK @5 27
C03 19  3  ENG  @0 Indium selenides @2 NK @5 27
C03 20  3  FRE  @0 Semiconducteur bande interdite large @5 28
C03 20  3  ENG  @0 Wide band gap semiconductors @5 28
C03 21  X  FRE  @0 Nanoamas @5 31
C03 21  X  ENG  @0 Nanocluster @5 31
C03 21  X  SPA  @0 Nanomontón @5 31
C03 22  X  FRE  @0 Matériau absorbant @5 32
C03 22  X  ENG  @0 Absorbent material @5 32
C03 22  X  SPA  @0 Material absorbente @5 32
C03 23  X  FRE  @0 CuInSe2 @4 INC @5 82
C03 24  X  FRE  @0 CuGaSe2 @4 INC @5 83
C03 25  X  FRE  @0 Semiconducteur à bande intermédiaire @4 CD @5 96
C03 25  X  ENG  @0 Intermediate band semiconductor @4 CD @5 96
N21       @1 347

Format Inist (serveur)

NO : PASCAL 10-0514933 INIST
ET : Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials
AU : FUERTES MARRON (D.); CANOVAS (E.); LEVY (M. Y.); MARTI (A.); LUQUE (A.); AFSHAR (M.); ALBERT (J.); LEHMANN (S.); ABOU-RAS (D.); SADEWASSER (S.); BARREAU (N.); CONIBEER (Gavin); SCHROPP (Ruud E. I.); MELLIKOV (Enn); TOPIC (Marko); BEAUCARNE (Guy)
AF : Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n/28040 Madrid/Espagne (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100/14109 Berlin/Allemagne (6 aut., 7 aut., 8 aut., 9 aut., 10 aut.); Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229/44322 Nantes/France (11 aut.); ARC Photovoltaics Centre of Excellence, University of New South Wales/Sydney 2052/Australie (1 aut.); Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000/3508 TA Utrecht/Pays-Bas (2 aut.); Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5/Tallinn 19086/Estonie (3 aut.); IMEC, Kapeldreef 75/3001 Leuven/Belgique (5 aut.)
DT : Publication en série; Niveau analytique
SO : Solar energy materials and solar cells; ISSN 0927-0248; Pays-Bas; Da. 2010; Vol. 94; No. 11; Pp. 1912-1918; Bibl. 20 ref.
LA : Anglais
EA : Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg= 1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg∼1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
CC : 001D06C02D1; 001D03C; 230
FD : Propriété optoélectronique; Nanostructure; Dispositif photovoltaïque; Photoréflectance; Diffusion mutuelle; Défaut; Structure électronique; Confinement; Bande valence; Structure bande; Etat natif; Structure défaut; Cellule solaire; Chalcopyrite; Nanomatériau; Couche mince; Composé ternaire; Séléniure de cuivre; Séléniure d'indium; Semiconducteur bande interdite large; Nanoamas; Matériau absorbant; CuInSe2; CuGaSe2; Semiconducteur à bande intermédiaire
ED : Optoelectronic properties; Nanostructure; Photovoltaic cell; Photoreflectance; Interdiffusion; Defect; Electronic structure; Confinement; Valence band; Band structure; Native state; Defect structure; Solar cell; Chalcopyrite; Nanostructured materials; Thin film; Ternary compound; Copper selenides; Indium selenides; Wide band gap semiconductors; Nanocluster; Absorbent material; Intermediate band semiconductor
SD : Propiedad optoelectrónica; Nanoestructura; Dispositivo fotovoltaico; Difusión mútua; Defecto; Estructura electrónica; Confinamiento; Banda valencia; Estructura banda; Estado nativo; Célula solar; Calcopirita; Capa fina; Compuesto ternario; Nanomontón; Material absorbente
LO : INIST-18016.354000191328110140
ID : 10-0514933

Links to Exploration step

Pascal:10-0514933

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials</title>
<author>
<name sortKey="Fuertes Marron, D" sort="Fuertes Marron, D" uniqKey="Fuertes Marron D" first="D." last="Fuertes Marron">D. Fuertes Marron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Canovas, E" sort="Canovas, E" uniqKey="Canovas E" first="E." last="Canovas">E. Canovas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Levy, M Y" sort="Levy, M Y" uniqKey="Levy M" first="M. Y." last="Levy">M. Y. Levy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marti, A" sort="Marti, A" uniqKey="Marti A" first="A." last="Marti">A. Marti</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Luque, A" sort="Luque, A" uniqKey="Luque A" first="A." last="Luque">A. Luque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Afshar, M" sort="Afshar, M" uniqKey="Afshar M" first="M." last="Afshar">M. Afshar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Albert, J" sort="Albert, J" uniqKey="Albert J" first="J." last="Albert">J. Albert</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lehmann, S" sort="Lehmann, S" uniqKey="Lehmann S" first="S." last="Lehmann">S. Lehmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abou Ras, D" sort="Abou Ras, D" uniqKey="Abou Ras D" first="D." last="Abou-Ras">D. Abou-Ras</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sadewasser, S" sort="Sadewasser, S" uniqKey="Sadewasser S" first="S." last="Sadewasser">S. Sadewasser</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Barreau, N" sort="Barreau, N" uniqKey="Barreau N" first="N." last="Barreau">N. Barreau</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0514933</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0514933 INIST</idno>
<idno type="RBID">Pascal:10-0514933</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002251</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials</title>
<author>
<name sortKey="Fuertes Marron, D" sort="Fuertes Marron, D" uniqKey="Fuertes Marron D" first="D." last="Fuertes Marron">D. Fuertes Marron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Canovas, E" sort="Canovas, E" uniqKey="Canovas E" first="E." last="Canovas">E. Canovas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Levy, M Y" sort="Levy, M Y" uniqKey="Levy M" first="M. Y." last="Levy">M. Y. Levy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marti, A" sort="Marti, A" uniqKey="Marti A" first="A." last="Marti">A. Marti</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Luque, A" sort="Luque, A" uniqKey="Luque A" first="A." last="Luque">A. Luque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Afshar, M" sort="Afshar, M" uniqKey="Afshar M" first="M." last="Afshar">M. Afshar</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Albert, J" sort="Albert, J" uniqKey="Albert J" first="J." last="Albert">J. Albert</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lehmann, S" sort="Lehmann, S" uniqKey="Lehmann S" first="S." last="Lehmann">S. Lehmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abou Ras, D" sort="Abou Ras, D" uniqKey="Abou Ras D" first="D." last="Abou-Ras">D. Abou-Ras</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sadewasser, S" sort="Sadewasser, S" uniqKey="Sadewasser S" first="S." last="Sadewasser">S. Sadewasser</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Barreau, N" sort="Barreau, N" uniqKey="Barreau N" first="N." last="Barreau">N. Barreau</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Solar energy materials and solar cells</title>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<idno type="ISSN">0927-0248</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Solar energy materials and solar cells</title>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<idno type="ISSN">0927-0248</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Band structure</term>
<term>Chalcopyrite</term>
<term>Confinement</term>
<term>Copper selenides</term>
<term>Defect</term>
<term>Defect structure</term>
<term>Electronic structure</term>
<term>Indium selenides</term>
<term>Interdiffusion</term>
<term>Intermediate band semiconductor</term>
<term>Nanocluster</term>
<term>Nanostructure</term>
<term>Nanostructured materials</term>
<term>Native state</term>
<term>Optoelectronic properties</term>
<term>Photoreflectance</term>
<term>Photovoltaic cell</term>
<term>Solar cell</term>
<term>Ternary compound</term>
<term>Thin film</term>
<term>Valence band</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optoélectronique</term>
<term>Nanostructure</term>
<term>Dispositif photovoltaïque</term>
<term>Photoréflectance</term>
<term>Diffusion mutuelle</term>
<term>Défaut</term>
<term>Structure électronique</term>
<term>Confinement</term>
<term>Bande valence</term>
<term>Structure bande</term>
<term>Etat natif</term>
<term>Structure défaut</term>
<term>Cellule solaire</term>
<term>Chalcopyrite</term>
<term>Nanomatériau</term>
<term>Couche mince</term>
<term>Composé ternaire</term>
<term>Séléniure de cuivre</term>
<term>Séléniure d'indium</term>
<term>Semiconducteur bande interdite large</term>
<term>Nanoamas</term>
<term>Matériau absorbant</term>
<term>CuInSe2</term>
<term>CuGaSe2</term>
<term>Semiconducteur à bande intermédiaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe
<sub>2</sub>
(Eg= 1.7 eV) and CuInSe
<sub>2</sub>
(1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In
<sub>2</sub>
S
<sub>3</sub>
samples (E
<sub>g</sub>
=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form Cu
<sub>x</sub>
In
<sub>y</sub>
S
<sub>z</sub>
(E
<sub>g</sub>
∼1.5 eV) nanoclusters into the In
<sub>2</sub>
S
<sub>3</sub>
matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In
<sub>2</sub>
S
<sub>3</sub>
is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Inorganic and Nanostructured Photovoltaics (EMRS B)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>FUERTES MARRON (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CANOVAS (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEVY (M. Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MARTI (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LUQUE (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AFSHAR (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ALBERT (J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LEHMANN (S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ABOU-RAS (D.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>SADEWASSER (S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>BARREAU (N.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CONIBEER (Gavin)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHROPP (Ruud E. I.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MELLIKOV (Enn)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>TOPIC (Marko)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>BEAUCARNE (Guy)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>ARC Photovoltaics Centre of Excellence, University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>Tallinn 19086</s2>
<s3>EST</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>IMEC, Kapeldreef 75</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>1912-1918</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000191328110140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0514933</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe
<sub>2</sub>
(Eg= 1.7 eV) and CuInSe
<sub>2</sub>
(1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In
<sub>2</sub>
S
<sub>3</sub>
samples (E
<sub>g</sub>
=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form Cu
<sub>x</sub>
In
<sub>y</sub>
S
<sub>z</sub>
(E
<sub>g</sub>
∼1.5 eV) nanoclusters into the In
<sub>2</sub>
S
<sub>3</sub>
matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In
<sub>2</sub>
S
<sub>3</sub>
is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photoréflectance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photoreflectance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffusion mutuelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Interdiffusion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difusión mútua</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Défaut</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Defect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Defecto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Confinement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Confinement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Confinamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Bande valence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Valence band</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Banda valencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Structure bande</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Band structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estructura banda</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Etat natif</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Native state</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estado nativo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Structure défaut</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Defect structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Nanoamas</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Nanocluster</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Nanomontón</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>CuGaSe2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Semiconducteur à bande intermédiaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Intermediate band semiconductor</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>347</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 10-0514933 INIST</NO>
<ET>Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials</ET>
<AU>FUERTES MARRON (D.); CANOVAS (E.); LEVY (M. Y.); MARTI (A.); LUQUE (A.); AFSHAR (M.); ALBERT (J.); LEHMANN (S.); ABOU-RAS (D.); SADEWASSER (S.); BARREAU (N.); CONIBEER (Gavin); SCHROPP (Ruud E. I.); MELLIKOV (Enn); TOPIC (Marko); BEAUCARNE (Guy)</AU>
<AF>Instituto de Energía Solar-ETSIT, UPM, Ciudad Universitaria s.n/28040 Madrid/Espagne (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Helmholtz-Zentrum Berlin für Materialen und Energie, Glienicker Str. 100/14109 Berlin/Allemagne (6 aut., 7 aut., 8 aut., 9 aut., 10 aut.); Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229/44322 Nantes/France (11 aut.); ARC Photovoltaics Centre of Excellence, University of New South Wales/Sydney 2052/Australie (1 aut.); Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000/3508 TA Utrecht/Pays-Bas (2 aut.); Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5/Tallinn 19086/Estonie (3 aut.); IMEC, Kapeldreef 75/3001 Leuven/Belgique (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Solar energy materials and solar cells; ISSN 0927-0248; Pays-Bas; Da. 2010; Vol. 94; No. 11; Pp. 1912-1918; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe
<sub>2</sub>
(Eg= 1.7 eV) and CuInSe
<sub>2</sub>
(1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In
<sub>2</sub>
S
<sub>3</sub>
samples (E
<sub>g</sub>
=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form Cu
<sub>x</sub>
In
<sub>y</sub>
S
<sub>z</sub>
(E
<sub>g</sub>
∼1.5 eV) nanoclusters into the In
<sub>2</sub>
S
<sub>3</sub>
matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In
<sub>2</sub>
S
<sub>3</sub>
is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.</EA>
<CC>001D06C02D1; 001D03C; 230</CC>
<FD>Propriété optoélectronique; Nanostructure; Dispositif photovoltaïque; Photoréflectance; Diffusion mutuelle; Défaut; Structure électronique; Confinement; Bande valence; Structure bande; Etat natif; Structure défaut; Cellule solaire; Chalcopyrite; Nanomatériau; Couche mince; Composé ternaire; Séléniure de cuivre; Séléniure d'indium; Semiconducteur bande interdite large; Nanoamas; Matériau absorbant; CuInSe2; CuGaSe2; Semiconducteur à bande intermédiaire</FD>
<ED>Optoelectronic properties; Nanostructure; Photovoltaic cell; Photoreflectance; Interdiffusion; Defect; Electronic structure; Confinement; Valence band; Band structure; Native state; Defect structure; Solar cell; Chalcopyrite; Nanostructured materials; Thin film; Ternary compound; Copper selenides; Indium selenides; Wide band gap semiconductors; Nanocluster; Absorbent material; Intermediate band semiconductor</ED>
<SD>Propiedad optoelectrónica; Nanoestructura; Dispositivo fotovoltaico; Difusión mútua; Defecto; Estructura electrónica; Confinamiento; Banda valencia; Estructura banda; Estado nativo; Célula solar; Calcopirita; Capa fina; Compuesto ternario; Nanomontón; Material absorbente</SD>
<LO>INIST-18016.354000191328110140</LO>
<ID>10-0514933</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0514933
   |texte=   Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materials
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024