Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation

Identifieur interne : 002031 ( PascalFrancis/Corpus ); précédent : 002030; suivant : 002032

Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation

Auteurs : C. Glotzbach ; J. Reinecker ; M. Danisik ; M. Rahn ; W. Frisch ; C. Spiegel

Source :

RBID : Pascal:11-0086423

Descripteurs français

English descriptors

Abstract

[1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 115
A06       @2 F3
A08 01  1  ENG  @1 Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation
A11 01  1    @1 GLOTZBACH (C.)
A11 02  1    @1 REINECKER (J.)
A11 03  1    @1 DANISIK (M.)
A11 04  1    @1 RAHN (M.)
A11 05  1    @1 FRISCH (W.)
A11 06  1    @1 SPIEGEL (C.)
A14 01      @1 Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier @2 Grenoble @3 FRA @Z 1 aut.
A14 02      @1 Now at Institute of Geology, University of Hannover @2 Hannover @3 DEU @Z 1 aut.
A14 03      @1 Institute for Geoscience, University of Tübingen @2 Tübingen @3 DEU @Z 2 aut. @Z 5 aut.
A14 04      @1 John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology @2 Perth, Western Australia @3 AUS @Z 3 aut.
A14 05      @1 Institute of Geoscience, University of Freiburg @2 Freiburg @3 DEU @Z 4 aut.
A14 06      @1 FB 5: Geoscience, University of Bremen @2 Bremen @3 DEU @Z 6 aut.
A20       @2 F03017.1-F03017.24
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000192540780170
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 2 p.3/4
A47 01  1    @0 11-0086423
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Histoire thermique @5 01
C03 01  2  ENG  @0 thermal history @5 01
C03 02  X  FRE  @0 Long terme @5 02
C03 02  X  ENG  @0 Long term @5 02
C03 02  X  SPA  @0 Largo plazo @5 02
C03 03  2  FRE  @0 Exhumation @5 03
C03 03  2  ENG  @0 exhumation @5 03
C03 04  2  FRE  @0 Géodynamique @5 04
C03 04  2  ENG  @0 geodynamics @5 04
C03 04  2  SPA  @0 Geodinámica @5 04
C03 05  2  FRE  @0 Apatite @2 NZ @5 05
C03 05  2  ENG  @0 apatite @2 NZ @5 05
C03 05  2  SPA  @0 Apatito @2 NZ @5 05
C03 06  2  FRE  @0 Zircon @2 NZ @5 06
C03 06  2  ENG  @0 zircon @2 NZ @5 06
C03 06  2  SPA  @0 Zircón @2 NZ @5 06
C03 07  2  FRE  @0 Trace fission @5 07
C03 07  2  ENG  @0 fission tracks @5 07
C03 07  2  SPA  @0 Traza fisión @5 07
C03 08  2  FRE  @0 Age @5 08
C03 08  2  ENG  @0 age @5 08
C03 08  2  SPA  @0 Edad @5 08
C03 09  2  FRE  @0 Température @5 09
C03 09  2  ENG  @0 temperature @5 09
C03 09  2  SPA  @0 Temperatura @5 09
C03 10  X  FRE  @0 Modélisation @5 10
C03 10  X  ENG  @0 Modeling @5 10
C03 10  X  SPA  @0 Modelización @5 10
C03 11  X  FRE  @0 Indentation @5 11
C03 11  X  ENG  @0 Indentation @5 11
C03 11  X  SPA  @0 Indentación @5 11
C03 12  2  FRE  @0 Chevauchement @5 12
C03 12  2  ENG  @0 thrust @5 12
C03 13  2  FRE  @0 Surrection @5 13
C03 13  2  ENG  @0 uplifts @5 13
C03 14  2  FRE  @0 Climat @5 14
C03 14  2  ENG  @0 climate @5 14
C03 14  2  SPA  @0 Clima @5 14
C03 15  2  FRE  @0 Extension @5 15
C03 15  2  ENG  @0 extension @5 15
C03 15  2  SPA  @0 Extensión @5 15
C03 16  2  FRE  @0 Pliocène @2 NX @5 16
C03 16  2  ENG  @0 Pliocene @2 NX @5 16
C03 16  2  SPA  @0 Plioceno @2 NX @5 16
C03 17  2  FRE  @0 Dénudation @5 17
C03 17  2  ENG  @0 denudation @5 17
C03 17  2  SPA  @0 Denudación @5 17
C03 18  2  FRE  @0 Fluctuation @5 18
C03 18  2  ENG  @0 fluctuations @5 18
C03 18  2  SPA  @0 Fluctuación @5 18
C03 19  2  FRE  @0 Efficacité @5 19
C03 19  2  ENG  @0 efficiency @5 19
C03 20  2  FRE  @0 Massif Aar @2 NG @5 61
C03 20  2  ENG  @0 Aar Massif @2 NG @5 61
C03 20  2  SPA  @0 Macizo Aar @2 NG @5 61
C03 21  2  FRE  @0 Massifs Cristallins Externes @2 NG @5 63
C03 21  2  ENG  @0 External Crystalline Massifs @2 NG @5 63
C07 01  2  FRE  @0 Phosphate @2 NZ
C07 01  2  ENG  @0 phosphates @2 NZ
C07 01  2  SPA  @0 Fosfato @2 NZ
C07 02  2  FRE  @0 Nésosilicate @2 NZ
C07 02  2  ENG  @0 nesosilicates @2 NZ
C07 03  2  FRE  @0 Silicate @2 NZ
C07 03  2  ENG  @0 silicates @2 NZ
C07 03  2  SPA  @0 Silicato @2 NZ
C07 04  2  FRE  @0 Néogène @2 NX
C07 04  2  ENG  @0 Neogene @2 NX
C07 04  2  SPA  @0 Neógeno @2 NX
C07 05  2  FRE  @0 Tertiaire sup @2 NX
C07 05  2  ENG  @0 upper Tertiary @2 NX
C07 06  2  FRE  @0 Tertiaire @2 NX
C07 06  2  ENG  @0 Tertiary @2 NX
C07 06  2  SPA  @0 Terciario @2 NX
C07 07  2  FRE  @0 Cénozoïque @2 NX
C07 07  2  ENG  @0 Cenozoic @2 NX
C07 07  2  SPA  @0 Cenozoico @2 NX
C07 08  2  FRE  @0 Phanérozoïque @2 NX
C07 08  2  ENG  @0 Phanerozoic @2 NX
C07 08  2  SPA  @0 Fanerozoico @2 NX
C07 09  2  FRE  @0 Alpes Suisses @2 NG
C07 09  2  ENG  @0 Swiss Alps @2 NG
C07 09  2  SPA  @0 Alpes Suizos @2 NG
C07 10  2  FRE  @0 Alpes @2 NG
C07 10  2  ENG  @0 Alps @2 NG
C07 10  2  SPA  @0 Alpes @2 NG
C07 11  2  FRE  @0 Europe @2 564
C07 11  2  ENG  @0 Europe @2 564
C07 11  2  SPA  @0 Europa @2 564
C07 12  2  FRE  @0 Alpes Occidentales @2 NG
C07 12  2  ENG  @0 Western Alps @2 NG
C07 12  2  SPA  @0 Alpes Occidentales @2 NG
N21       @1 059
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0086423 INIST
ET : Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation
AU : GLOTZBACH (C.); REINECKER (J.); DANISIK (M.); RAHN (M.); FRISCH (W.); SPIEGEL (C.)
AF : Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier/Grenoble/France (1 aut.); Now at Institute of Geology, University of Hannover/Hannover/Allemagne (1 aut.); Institute for Geoscience, University of Tübingen/Tübingen/Allemagne (2 aut., 5 aut.); John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology/Perth, Western Australia/Australie (3 aut.); Institute of Geoscience, University of Freiburg/Freiburg/Allemagne (4 aut.); FB 5: Geoscience, University of Bremen/Bremen/Allemagne (6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2010; Vol. 115; No. F3; F03017.1-F03017.24; Bibl. 2 p.3/4
LA : Anglais
EA : [1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.
CC : 001E; 001E01; 220
FD : Histoire thermique; Long terme; Exhumation; Géodynamique; Apatite; Zircon; Trace fission; Age; Température; Modélisation; Indentation; Chevauchement; Surrection; Climat; Extension; Pliocène; Dénudation; Fluctuation; Efficacité; Massif Aar; Massifs Cristallins Externes
FG : Phosphate; Nésosilicate; Silicate; Néogène; Tertiaire sup; Tertiaire; Cénozoïque; Phanérozoïque; Alpes Suisses; Alpes; Europe; Alpes Occidentales
ED : thermal history; Long term; exhumation; geodynamics; apatite; zircon; fission tracks; age; temperature; Modeling; Indentation; thrust; uplifts; climate; extension; Pliocene; denudation; fluctuations; efficiency; Aar Massif; External Crystalline Massifs
EG : phosphates; nesosilicates; silicates; Neogene; upper Tertiary; Tertiary; Cenozoic; Phanerozoic; Swiss Alps; Alps; Europe; Western Alps
SD : Largo plazo; Geodinámica; Apatito; Zircón; Traza fisión; Edad; Temperatura; Modelización; Indentación; Clima; Extensión; Plioceno; Denudación; Fluctuación; Macizo Aar
LO : INIST-3144.354000192540780170
ID : 11-0086423

Links to Exploration step

Pascal:11-0086423

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation</title>
<author>
<name sortKey="Glotzbach, C" sort="Glotzbach, C" uniqKey="Glotzbach C" first="C." last="Glotzbach">C. Glotzbach</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at Institute of Geology, University of Hannover</s1>
<s2>Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reinecker, J" sort="Reinecker, J" uniqKey="Reinecker J" first="J." last="Reinecker">J. Reinecker</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Geoscience, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Danisik, M" sort="Danisik, M" uniqKey="Danisik M" first="M." last="Danisik">M. Danisik</name>
<affiliation>
<inist:fA14 i1="04">
<s1>John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology</s1>
<s2>Perth, Western Australia</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahn, M" sort="Rahn, M" uniqKey="Rahn M" first="M." last="Rahn">M. Rahn</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institute of Geoscience, University of Freiburg</s1>
<s2>Freiburg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Frisch, W" sort="Frisch, W" uniqKey="Frisch W" first="W." last="Frisch">W. Frisch</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Geoscience, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Spiegel, C" sort="Spiegel, C" uniqKey="Spiegel C" first="C." last="Spiegel">C. Spiegel</name>
<affiliation>
<inist:fA14 i1="06">
<s1>FB 5: Geoscience, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0086423</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0086423 INIST</idno>
<idno type="RBID">Pascal:11-0086423</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation</title>
<author>
<name sortKey="Glotzbach, C" sort="Glotzbach, C" uniqKey="Glotzbach C" first="C." last="Glotzbach">C. Glotzbach</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at Institute of Geology, University of Hannover</s1>
<s2>Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Reinecker, J" sort="Reinecker, J" uniqKey="Reinecker J" first="J." last="Reinecker">J. Reinecker</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Geoscience, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Danisik, M" sort="Danisik, M" uniqKey="Danisik M" first="M." last="Danisik">M. Danisik</name>
<affiliation>
<inist:fA14 i1="04">
<s1>John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology</s1>
<s2>Perth, Western Australia</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahn, M" sort="Rahn, M" uniqKey="Rahn M" first="M." last="Rahn">M. Rahn</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institute of Geoscience, University of Freiburg</s1>
<s2>Freiburg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Frisch, W" sort="Frisch, W" uniqKey="Frisch W" first="W." last="Frisch">W. Frisch</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Geoscience, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Spiegel, C" sort="Spiegel, C" uniqKey="Spiegel C" first="C." last="Spiegel">C. Spiegel</name>
<affiliation>
<inist:fA14 i1="06">
<s1>FB 5: Geoscience, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aar Massif</term>
<term>External Crystalline Massifs</term>
<term>Indentation</term>
<term>Long term</term>
<term>Modeling</term>
<term>Pliocene</term>
<term>age</term>
<term>apatite</term>
<term>climate</term>
<term>denudation</term>
<term>efficiency</term>
<term>exhumation</term>
<term>extension</term>
<term>fission tracks</term>
<term>fluctuations</term>
<term>geodynamics</term>
<term>temperature</term>
<term>thermal history</term>
<term>thrust</term>
<term>uplifts</term>
<term>zircon</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Histoire thermique</term>
<term>Long terme</term>
<term>Exhumation</term>
<term>Géodynamique</term>
<term>Apatite</term>
<term>Zircon</term>
<term>Trace fission</term>
<term>Age</term>
<term>Température</term>
<term>Modélisation</term>
<term>Indentation</term>
<term>Chevauchement</term>
<term>Surrection</term>
<term>Climat</term>
<term>Extension</term>
<term>Pliocène</term>
<term>Dénudation</term>
<term>Fluctuation</term>
<term>Efficacité</term>
<term>Massif Aar</term>
<term>Massifs Cristallins Externes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>115</s2>
</fA05>
<fA06>
<s2>F3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GLOTZBACH (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>REINECKER (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DANISIK (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RAHN (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FRISCH (W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SPIEGEL (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Now at Institute of Geology, University of Hannover</s1>
<s2>Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Geoscience, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology</s1>
<s2>Perth, Western Australia</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Geoscience, University of Freiburg</s1>
<s2>Freiburg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>FB 5: Geoscience, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>F03017.1-F03017.24</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000192540780170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0086423</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Histoire thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>thermal history</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Long terme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Long term</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Largo plazo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Exhumation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>exhumation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Géodynamique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>geodynamics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Geodinámica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Apatite</s0>
<s2>NZ</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>apatite</s0>
<s2>NZ</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Apatito</s0>
<s2>NZ</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Zircon</s0>
<s2>NZ</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>zircon</s0>
<s2>NZ</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Zircón</s0>
<s2>NZ</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Trace fission</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>fission tracks</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Traza fisión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Age</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>age</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Edad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Temperatura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Indentation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indentation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Indentación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Chevauchement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>thrust</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Surrection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>uplifts</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Climat</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>climate</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Clima</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Extension</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>extension</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Extensión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Pliocène</s0>
<s2>NX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>Pliocene</s0>
<s2>NX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Plioceno</s0>
<s2>NX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Dénudation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>denudation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Denudación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Fluctuation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>fluctuations</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Fluctuación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Efficacité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>efficiency</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Massif Aar</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Aar Massif</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Macizo Aar</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Massifs Cristallins Externes</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>External Crystalline Massifs</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Phosphate</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>phosphates</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Fosfato</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Nésosilicate</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>nesosilicates</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Silicate</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>silicates</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Silicato</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Néogène</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Neogene</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Neógeno</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="05" i2="2" l="FRE">
<s0>Tertiaire sup</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="05" i2="2" l="ENG">
<s0>upper Tertiary</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="06" i2="2" l="FRE">
<s0>Tertiaire</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="06" i2="2" l="ENG">
<s0>Tertiary</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="06" i2="2" l="SPA">
<s0>Terciario</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="07" i2="2" l="FRE">
<s0>Cénozoïque</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="07" i2="2" l="ENG">
<s0>Cenozoic</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="07" i2="2" l="SPA">
<s0>Cenozoico</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="08" i2="2" l="FRE">
<s0>Phanérozoïque</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="08" i2="2" l="ENG">
<s0>Phanerozoic</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="08" i2="2" l="SPA">
<s0>Fanerozoico</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="09" i2="2" l="FRE">
<s0>Alpes Suisses</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="2" l="ENG">
<s0>Swiss Alps</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="2" l="SPA">
<s0>Alpes Suizos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="10" i2="2" l="FRE">
<s0>Alpes</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="10" i2="2" l="ENG">
<s0>Alps</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="10" i2="2" l="SPA">
<s0>Alpes</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="11" i2="2" l="FRE">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="11" i2="2" l="ENG">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="11" i2="2" l="SPA">
<s0>Europa</s0>
<s2>564</s2>
</fC07>
<fC07 i1="12" i2="2" l="FRE">
<s0>Alpes Occidentales</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="12" i2="2" l="ENG">
<s0>Western Alps</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="12" i2="2" l="SPA">
<s0>Alpes Occidentales</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>059</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0086423 INIST</NO>
<ET>Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation</ET>
<AU>GLOTZBACH (C.); REINECKER (J.); DANISIK (M.); RAHN (M.); FRISCH (W.); SPIEGEL (C.)</AU>
<AF>Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier/Grenoble/France (1 aut.); Now at Institute of Geology, University of Hannover/Hannover/Allemagne (1 aut.); Institute for Geoscience, University of Tübingen/Tübingen/Allemagne (2 aut., 5 aut.); John de Laeter Centre of Mass Spectrometry, Applied Geology, Curtin University of Technology/Perth, Western Australia/Australie (3 aut.); Institute of Geoscience, University of Freiburg/Freiburg/Allemagne (4 aut.); FB 5: Geoscience, University of Bremen/Bremen/Allemagne (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2010; Vol. 115; No. F3; F03017.1-F03017.24; Bibl. 2 p.3/4</SO>
<LA>Anglais</LA>
<EA>[1] Quantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ˜0.5 km/Ma since ˜14 Ma. A slightly accelerated rate (˜0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ˜14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ˜0.5 km/Ma paleoexhumation rate.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Histoire thermique; Long terme; Exhumation; Géodynamique; Apatite; Zircon; Trace fission; Age; Température; Modélisation; Indentation; Chevauchement; Surrection; Climat; Extension; Pliocène; Dénudation; Fluctuation; Efficacité; Massif Aar; Massifs Cristallins Externes</FD>
<FG>Phosphate; Nésosilicate; Silicate; Néogène; Tertiaire sup; Tertiaire; Cénozoïque; Phanérozoïque; Alpes Suisses; Alpes; Europe; Alpes Occidentales</FG>
<ED>thermal history; Long term; exhumation; geodynamics; apatite; zircon; fission tracks; age; temperature; Modeling; Indentation; thrust; uplifts; climate; extension; Pliocene; denudation; fluctuations; efficiency; Aar Massif; External Crystalline Massifs</ED>
<EG>phosphates; nesosilicates; silicates; Neogene; upper Tertiary; Tertiary; Cenozoic; Phanerozoic; Swiss Alps; Alps; Europe; Western Alps</EG>
<SD>Largo plazo; Geodinámica; Apatito; Zircón; Traza fisión; Edad; Temperatura; Modelización; Indentación; Clima; Extensión; Plioceno; Denudación; Fluctuación; Macizo Aar</SD>
<LO>INIST-3144.354000192540780170</LO>
<ID>11-0086423</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0086423
   |texte=   Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024