Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture

Identifieur interne : 001E71 ( PascalFrancis/Corpus ); précédent : 001E70; suivant : 001E72

Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture

Auteurs : C. S. Draper ; J.-F. Mahfouf ; J. P. Walker

Source :

RBID : Pascal:11-0169610

Descripteurs français

English descriptors

Abstract

[1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 116
A06       @2 D2
A08 01  1  ENG  @1 Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture
A11 01  1    @1 DRAPER (C. S.)
A11 02  1    @1 MAHFOUF (J.-F.)
A11 03  1    @1 WALKER (J. P.)
A14 01      @1 Department of Civil and Environmental Engineering, University of Melbourne @2 Melbourne, Victoria @3 AUS @Z 1 aut. @Z 3 aut.
A14 02      @1 Now at GAME, CNRM, Météo-France/CNRS @2 Toulouse @3 FRA @Z 1 aut.
A14 03      @1 GAME, CNRM, Météo-France/CNRS @2 Toulouse @3 FRA @Z 2 aut.
A14 04      @1 Now at Department of Civil Engineering, Monash University @2 Clayton, Victoria @3 AUS @Z 3 aut.
A20       @2 D02127.1-D02127.13
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000194452620270
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0169610
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Humidité sol @5 01
C03 01  2  ENG  @0 soil moisture @5 01
C03 01  2  SPA  @0 Humedad suelo @5 01
C03 02  2  FRE  @0 Assimilation @5 02
C03 02  2  ENG  @0 assimilation @5 02
C03 02  2  SPA  @0 Asimilación @5 02
C03 03  X  FRE  @0 Prévision météorologique @5 03
C03 03  X  ENG  @0 Weather forecast @5 03
C03 03  X  SPA  @0 Predicción meteorológica @5 03
C03 04  X  FRE  @0 Prévision numérique @5 04
C03 04  X  ENG  @0 Numerical forecast @5 04
C03 04  X  SPA  @0 Previsión numérica @5 04
C03 05  2  FRE  @0 Modèle @5 05
C03 05  2  ENG  @0 models @5 05
C03 05  2  SPA  @0 Modelo @5 05
C03 06  2  FRE  @0 Température @5 06
C03 06  2  ENG  @0 temperature @5 06
C03 06  2  SPA  @0 Temperatura @5 06
C03 07  X  FRE  @0 Humidité relative @5 07
C03 07  X  ENG  @0 Relative humidity @5 07
C03 07  X  SPA  @0 Humedad relativa @5 07
C03 08  2  FRE  @0 Plomb @5 08
C03 08  2  ENG  @0 lead @5 08
C03 08  2  SPA  @0 Plomo @5 08
C03 09  X  FRE  @0 Surface sol @5 09
C03 09  X  ENG  @0 Ground surface @5 09
C03 09  X  SPA  @0 Superficie suelo @5 09
C03 10  2  FRE  @0 Etude expérimentale @5 10
C03 10  2  ENG  @0 experimental studies @5 10
C03 11  X  FRE  @0 Transfert turbulent @5 11
C03 11  X  ENG  @0 Turbulent transfer @5 11
C03 11  X  SPA  @0 Transferencia turbulenta @5 11
C03 12  2  FRE  @0 Variation diurne @5 12
C03 12  2  ENG  @0 diurnal variations @5 12
C03 12  2  SPA  @0 Variación diurna @5 12
C03 13  X  FRE  @0 Erreur systématique @5 13
C03 13  X  ENG  @0 Bias @5 13
C03 13  X  SPA  @0 Error sistemático @5 13
C03 14  2  FRE  @0 Inclusion @5 14
C03 14  2  ENG  @0 inclusions @5 14
C03 14  2  SPA  @0 Inclusión @5 14
C03 15  X  FRE  @0 Observation par satellite @5 15
C03 15  X  ENG  @0 Satellite observation @5 15
C03 15  X  SPA  @0 Observación por satélite @5 15
C03 16  X  FRE  @0 Radiométrie hyperfréquence @5 16
C03 16  X  ENG  @0 Microwave radiometry @5 16
C03 16  X  SPA  @0 Radiometría hiperfrecuencia @5 16
C03 17  2  FRE  @0 Télédétection spatiale @5 17
C03 17  2  ENG  @0 Space remote sensing @5 17
C03 17  2  SPA  @0 Teledetección espacial @5 17
N21       @1 108
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0169610 INIST
ET : Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture
AU : DRAPER (C. S.); MAHFOUF (J.-F.); WALKER (J. P.)
AF : Department of Civil and Environmental Engineering, University of Melbourne/Melbourne, Victoria/Australie (1 aut., 3 aut.); Now at GAME, CNRM, Météo-France/CNRS/Toulouse/France (1 aut.); GAME, CNRM, Météo-France/CNRS/Toulouse/France (2 aut.); Now at Department of Civil Engineering, Monash University/Clayton, Victoria/Australie (3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2011; Vol. 116; No. D2; D02127.1-D02127.13; Bibl. 3/4 p.
LA : Anglais
EA : [1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.
CC : 001E; 001E01; 220
FD : Humidité sol; Assimilation; Prévision météorologique; Prévision numérique; Modèle; Température; Humidité relative; Plomb; Surface sol; Etude expérimentale; Transfert turbulent; Variation diurne; Erreur systématique; Inclusion; Observation par satellite; Radiométrie hyperfréquence; Télédétection spatiale
ED : soil moisture; assimilation; Weather forecast; Numerical forecast; models; temperature; Relative humidity; lead; Ground surface; experimental studies; Turbulent transfer; diurnal variations; Bias; inclusions; Satellite observation; Microwave radiometry; Space remote sensing
SD : Humedad suelo; Asimilación; Predicción meteorológica; Previsión numérica; Modelo; Temperatura; Humedad relativa; Plomo; Superficie suelo; Transferencia turbulenta; Variación diurna; Error sistemático; Inclusión; Observación por satélite; Radiometría hiperfrecuencia; Teledetección espacial
LO : INIST-3144.354000194452620270
ID : 11-0169610

Links to Exploration step

Pascal:11-0169610

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture</title>
<author>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil and Environmental Engineering, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahfouf, J F" sort="Mahfouf, J F" uniqKey="Mahfouf J" first="J.-F." last="Mahfouf">J.-F. Mahfouf</name>
<affiliation>
<inist:fA14 i1="03">
<s1>GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil and Environmental Engineering, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Now at Department of Civil Engineering, Monash University</s1>
<s2>Clayton, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0169610</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0169610 INIST</idno>
<idno type="RBID">Pascal:11-0169610</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001E71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture</title>
<author>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil and Environmental Engineering, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahfouf, J F" sort="Mahfouf, J F" uniqKey="Mahfouf J" first="J.-F." last="Mahfouf">J.-F. Mahfouf</name>
<affiliation>
<inist:fA14 i1="03">
<s1>GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil and Environmental Engineering, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Now at Department of Civil Engineering, Monash University</s1>
<s2>Clayton, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias</term>
<term>Ground surface</term>
<term>Microwave radiometry</term>
<term>Numerical forecast</term>
<term>Relative humidity</term>
<term>Satellite observation</term>
<term>Space remote sensing</term>
<term>Turbulent transfer</term>
<term>Weather forecast</term>
<term>assimilation</term>
<term>diurnal variations</term>
<term>experimental studies</term>
<term>inclusions</term>
<term>lead</term>
<term>models</term>
<term>soil moisture</term>
<term>temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Humidité sol</term>
<term>Assimilation</term>
<term>Prévision météorologique</term>
<term>Prévision numérique</term>
<term>Modèle</term>
<term>Température</term>
<term>Humidité relative</term>
<term>Plomb</term>
<term>Surface sol</term>
<term>Etude expérimentale</term>
<term>Transfert turbulent</term>
<term>Variation diurne</term>
<term>Erreur systématique</term>
<term>Inclusion</term>
<term>Observation par satellite</term>
<term>Radiométrie hyperfréquence</term>
<term>Télédétection spatiale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>D2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DRAPER (C. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAHFOUF (J.-F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALKER (J. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Civil and Environmental Engineering, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Now at GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>GAME, CNRM, Météo-France/CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Now at Department of Civil Engineering, Monash University</s1>
<s2>Clayton, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>D02127.1-D02127.13</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000194452620270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0169610</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Humidité sol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>soil moisture</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Humedad suelo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Assimilation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>assimilation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Asimilación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Prévision météorologique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Weather forecast</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Predicción meteorológica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Prévision numérique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Numerical forecast</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Previsión numérica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Température</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>temperature</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Temperatura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Humidité relative</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Relative humidity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Humedad relativa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Plomb</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>lead</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Plomo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Surface sol</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ground surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Superficie suelo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transfert turbulent</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Turbulent transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transferencia turbulenta</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Variation diurne</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>diurnal variations</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Variación diurna</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Erreur systématique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Bias</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Error sistemático</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Inclusion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>inclusions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Inclusión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Radiométrie hyperfréquence</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Microwave radiometry</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Radiometría hiperfrecuencia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Télédétection spatiale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Space remote sensing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Teledetección espacial</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>108</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0169610 INIST</NO>
<ET>Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture</ET>
<AU>DRAPER (C. S.); MAHFOUF (J.-F.); WALKER (J. P.)</AU>
<AF>Department of Civil and Environmental Engineering, University of Melbourne/Melbourne, Victoria/Australie (1 aut., 3 aut.); Now at GAME, CNRM, Météo-France/CNRS/Toulouse/France (1 aut.); GAME, CNRM, Météo-France/CNRS/Toulouse/France (2 aut.); Now at Department of Civil Engineering, Monash University/Clayton, Victoria/Australie (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2011; Vol. 116; No. D2; D02127.1-D02127.13; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] In most operational NWP models, root zone soil moisture is constrained using observations of screen-level temperature and relative humidity. While this generally improves low-level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near-surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen-level observations and near-surface soil moisture data from AMSR-E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR-E data, either in place of or together with the screen-level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR-E data could not have replaced the screen-level data to obtain similar surface turbulent fluxes. For the screen-level variables, there is a persistent diurnal cycle in the model-observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen-level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near-surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen-level observations do, and the inclusion of the AMSR-E data does not substantially change the results compared to the assimilation of screen-level variables alone.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Humidité sol; Assimilation; Prévision météorologique; Prévision numérique; Modèle; Température; Humidité relative; Plomb; Surface sol; Etude expérimentale; Transfert turbulent; Variation diurne; Erreur systématique; Inclusion; Observation par satellite; Radiométrie hyperfréquence; Télédétection spatiale</FD>
<ED>soil moisture; assimilation; Weather forecast; Numerical forecast; models; temperature; Relative humidity; lead; Ground surface; experimental studies; Turbulent transfer; diurnal variations; Bias; inclusions; Satellite observation; Microwave radiometry; Space remote sensing</ED>
<SD>Humedad suelo; Asimilación; Predicción meteorológica; Previsión numérica; Modelo; Temperatura; Humedad relativa; Plomo; Superficie suelo; Transferencia turbulenta; Variación diurna; Error sistemático; Inclusión; Observación por satélite; Radiometría hiperfrecuencia; Teledetección espacial</SD>
<LO>INIST-3144.354000194452620270</LO>
<ID>11-0169610</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001E71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0169610
   |texte=   Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024