Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest

Identifieur interne : 001B79 ( PascalFrancis/Corpus ); précédent : 001B78; suivant : 001B80

Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest

Auteurs : Carla Waring ; Kerry L. King ; Paul A. J. Bagot ; Matthew L. Costen ; Kenneth G. Mckendrick

Source :

RBID : Pascal:11-0291070

Descripteurs français

English descriptors

Abstract

The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C18H34O2, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol-1 was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1463-9076
A03   1    @0 PCCP, Phys. chem. chem. phys. : (Print)
A05       @2 13
A06       @2 18
A08 01  1  ENG  @1 Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest
A09 01  1  ENG  @1 Molecular Collision Dynamics
A11 01  1    @1 WARING (Carla)
A11 02  1    @1 KING (Kerry L.)
A11 03  1    @1 BAGOT (Paul A. J.)
A11 04  1    @1 COSTEN (Matthew L.)
A11 05  1    @1 MCKENDRICK (Kenneth G.)
A12 01  1    @1 CASAVECCHIA (Piergiorgio) @9 ed.
A12 02  1    @1 BROUARD (Mark) @9 ed.
A12 03  1    @1 COSTES (Michel) @9 ed.
A12 04  1    @1 NESBITT (David) @9 ed.
A12 05  1    @1 BIESKE (Evan) @9 ed.
A12 06  1    @1 KABLE (Scott) @9 ed.
A14 01      @1 School of Engineering and Physical Sciences, Heriot- Watt University, @2 Edinburgh EH14 4AS @3 GBR @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A15 01      @1 Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8 @2 06123 Perugia @3 ITA @Z 1 aut.
A15 02      @1 Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road @2 Oxford, OX1 3QZ @3 GBR @Z 2 aut.
A15 03      @1 Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires @2 33405 Talence @3 FRA @Z 3 aut.
A15 04      @1 JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado, @2 Boulder, CO, 80309 @3 USA @Z 4 aut.
A15 05      @1 University of Melbourne, School of Chemistry @3 AUS @Z 5 aut.
A15 06      @1 University of Sydney, School of Chemistry @3 AUS @Z 6 aut.
A20       @1 8457-8469
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 26801 @5 354000191573960400
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 96 ref.
A47 01  1    @0 11-0291070
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 PCCP. Physical chemistry chemical physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C18H34O2, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol-1 was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.
C02 01  X    @0 001C01
C02 02  X    @0 001C01F01
C03 01  X  FRE  @0 Collision @5 01
C03 01  X  ENG  @0 Collision @5 01
C03 01  X  SPA  @0 Colisión @5 01
C03 02  X  FRE  @0 Dynamique @5 02
C03 02  X  ENG  @0 Dynamics @5 02
C03 02  X  SPA  @0 Dinámica @5 02
C03 03  X  FRE  @0 Liquide @5 03
C03 03  X  ENG  @0 Liquid @5 03
C03 03  X  SPA  @0 Líquido @5 03
C03 04  X  FRE  @0 Diffusion inélastique @5 04
C03 04  X  ENG  @0 Inelastic scattering @5 04
C03 04  X  SPA  @0 Difusión inelástica @5 04
C03 05  X  FRE  @0 Acide oléique @2 NK @5 05
C03 05  X  ENG  @0 Oleic acid @2 NK @5 05
C03 05  X  SPA  @0 Oleico ácido @2 NK @5 05
C03 06  X  FRE  @0 Référence @5 06
C03 06  X  ENG  @0 Reference @5 06
C03 06  X  SPA  @0 Referencia @5 06
C03 07  X  FRE  @0 Phase gazeuse @5 07
C03 07  X  ENG  @0 Gas phase @5 07
C03 07  X  SPA  @0 Fase gaseosa @5 07
C03 08  X  FRE  @0 Laboratoire @5 08
C03 08  X  ENG  @0 Laboratory @5 08
C03 08  X  SPA  @0 Laboratorio @5 08
C03 09  X  FRE  @0 Energie cinétique @5 09
C03 09  X  ENG  @0 Kinetic energy @5 09
C03 09  X  SPA  @0 Energía cinética @5 09
C03 10  X  FRE  @0 Photolyse @5 10
C03 10  X  ENG  @0 Photolysis @5 10
C03 10  X  SPA  @0 Fotolisis @5 10
C03 11  X  FRE  @0 Basse pression @5 11
C03 11  X  ENG  @0 Low pressure @5 11
C03 11  X  SPA  @0 Baja presión @5 11
C03 12  X  FRE  @0 Fluorescence induite par laser @5 12
C03 12  X  ENG  @0 Laser induced fluorescence @5 12
C03 12  X  SPA  @0 Fluorescencia inducida por laser @5 12
C03 13  X  FRE  @0 Efficacité @5 13
C03 13  X  ENG  @0 Efficiency @5 13
C03 13  X  SPA  @0 Eficacia @5 13
C03 14  X  FRE  @0 Transfert quantité mouvement @5 14
C03 14  X  ENG  @0 Momentum transfer @5 14
C03 14  X  SPA  @0 Transferencia cantidad movimiento @5 14
C03 15  X  FRE  @0 Vitesse déplacement @5 15
C03 15  X  ENG  @0 Speed @5 15
C03 15  X  SPA  @0 Velocidad desplazamiento @5 15
C03 16  X  FRE  @0 Distribution @5 16
C03 16  X  ENG  @0 Distribution @5 16
C03 16  X  SPA  @0 Distribución @5 16
C03 17  X  FRE  @0 Accommodation @5 17
C03 17  X  ENG  @0 Accommodation @5 17
C03 17  X  SPA  @0 Acomodo @5 17
C03 18  X  FRE  @0 Mécanisme @5 18
C03 18  X  ENG  @0 Mechanism @5 18
C03 18  X  SPA  @0 Mecanismo @5 18
C03 19  X  FRE  @0 Haute température @5 19
C03 19  X  ENG  @0 High temperature @5 19
C03 19  X  SPA  @0 Alta temperatura @5 19
C03 20  X  FRE  @0 Spectre excitation @5 20
C03 20  X  ENG  @0 Excitation spectrum @5 20
C03 20  X  SPA  @0 Espectro excitación @5 20
C03 21  X  FRE  @0 Energie translationnelle @5 21
C03 21  X  ENG  @0 Translational energy @5 21
C03 21  X  SPA  @0 Energía traslacional @5 21
C03 22  X  FRE  @0 Transfert énergie @5 22
C03 22  X  ENG  @0 Energy transfer @5 22
C03 22  X  SPA  @0 Transferencia energía @5 22
C03 23  X  FRE  @0 Structure fine @5 23
C03 23  X  ENG  @0 Fine structure @5 23
C03 23  X  SPA  @0 Estructura fina @5 23
C03 24  X  FRE  @0 Etat doublet @5 24
C03 24  X  ENG  @0 Doublet state @5 24
C03 24  X  SPA  @0 Estado doblete @5 24
C03 25  X  FRE  @0 Etude comparative @5 25
C03 25  X  ENG  @0 Comparative study @5 25
C03 25  X  SPA  @0 Estudio comparativo @5 25
N21       @1 192
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0291070 INIST
ET : Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest
AU : WARING (Carla); KING (Kerry L.); BAGOT (Paul A. J.); COSTEN (Matthew L.); MCKENDRICK (Kenneth G.); CASAVECCHIA (Piergiorgio); BROUARD (Mark); COSTES (Michel); NESBITT (David); BIESKE (Evan); KABLE (Scott)
AF : School of Engineering and Physical Sciences, Heriot- Watt University,/Edinburgh EH14 4AS/Royaume-Uni (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8/06123 Perugia/Italie (1 aut.); Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road/Oxford, OX1 3QZ/Royaume-Uni (2 aut.); Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires/33405 Talence/France (3 aut.); JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,/Boulder, CO, 80309/Etats-Unis (4 aut.); University of Melbourne, School of Chemistry/Australie (5 aut.); University of Sydney, School of Chemistry/Australie (6 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : PCCP. Physical chemistry chemical physics : (Print); ISSN 1463-9076; Royaume-Uni; Da. 2011; Vol. 13; No. 18; Pp. 8457-8469; Bibl. 96 ref.
LA : Anglais
EA : The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C18H34O2, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol-1 was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.
CC : 001C01; 001C01F01
FD : Collision; Dynamique; Liquide; Diffusion inélastique; Acide oléique; Référence; Phase gazeuse; Laboratoire; Energie cinétique; Photolyse; Basse pression; Fluorescence induite par laser; Efficacité; Transfert quantité mouvement; Vitesse déplacement; Distribution; Accommodation; Mécanisme; Haute température; Spectre excitation; Energie translationnelle; Transfert énergie; Structure fine; Etat doublet; Etude comparative
ED : Collision; Dynamics; Liquid; Inelastic scattering; Oleic acid; Reference; Gas phase; Laboratory; Kinetic energy; Photolysis; Low pressure; Laser induced fluorescence; Efficiency; Momentum transfer; Speed; Distribution; Accommodation; Mechanism; High temperature; Excitation spectrum; Translational energy; Energy transfer; Fine structure; Doublet state; Comparative study
SD : Colisión; Dinámica; Líquido; Difusión inelástica; Oleico ácido; Referencia; Fase gaseosa; Laboratorio; Energía cinética; Fotolisis; Baja presión; Fluorescencia inducida por laser; Eficacia; Transferencia cantidad movimiento; Velocidad desplazamiento; Distribución; Acomodo; Mecanismo; Alta temperatura; Espectro excitación; Energía traslacional; Transferencia energía; Estructura fina; Estado doblete; Estudio comparativo
LO : INIST-26801.354000191573960400
ID : 11-0291070

Links to Exploration step

Pascal:11-0291070

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest</title>
<author>
<name sortKey="Waring, Carla" sort="Waring, Carla" uniqKey="Waring C" first="Carla" last="Waring">Carla Waring</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="King, Kerry L" sort="King, Kerry L" uniqKey="King K" first="Kerry L." last="King">Kerry L. King</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bagot, Paul A J" sort="Bagot, Paul A J" uniqKey="Bagot P" first="Paul A. J." last="Bagot">Paul A. J. Bagot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Costen, Matthew L" sort="Costen, Matthew L" uniqKey="Costen M" first="Matthew L." last="Costen">Matthew L. Costen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckendrick, Kenneth G" sort="Mckendrick, Kenneth G" uniqKey="Mckendrick K" first="Kenneth G." last="Mckendrick">Kenneth G. Mckendrick</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0291070</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0291070 INIST</idno>
<idno type="RBID">Pascal:11-0291070</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest</title>
<author>
<name sortKey="Waring, Carla" sort="Waring, Carla" uniqKey="Waring C" first="Carla" last="Waring">Carla Waring</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="King, Kerry L" sort="King, Kerry L" uniqKey="King K" first="Kerry L." last="King">Kerry L. King</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bagot, Paul A J" sort="Bagot, Paul A J" uniqKey="Bagot P" first="Paul A. J." last="Bagot">Paul A. J. Bagot</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Costen, Matthew L" sort="Costen, Matthew L" uniqKey="Costen M" first="Matthew L." last="Costen">Matthew L. Costen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckendrick, Kenneth G" sort="Mckendrick, Kenneth G" uniqKey="Mckendrick K" first="Kenneth G." last="Mckendrick">Kenneth G. Mckendrick</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accommodation</term>
<term>Collision</term>
<term>Comparative study</term>
<term>Distribution</term>
<term>Doublet state</term>
<term>Dynamics</term>
<term>Efficiency</term>
<term>Energy transfer</term>
<term>Excitation spectrum</term>
<term>Fine structure</term>
<term>Gas phase</term>
<term>High temperature</term>
<term>Inelastic scattering</term>
<term>Kinetic energy</term>
<term>Laboratory</term>
<term>Laser induced fluorescence</term>
<term>Liquid</term>
<term>Low pressure</term>
<term>Mechanism</term>
<term>Momentum transfer</term>
<term>Oleic acid</term>
<term>Photolysis</term>
<term>Reference</term>
<term>Speed</term>
<term>Translational energy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Collision</term>
<term>Dynamique</term>
<term>Liquide</term>
<term>Diffusion inélastique</term>
<term>Acide oléique</term>
<term>Référence</term>
<term>Phase gazeuse</term>
<term>Laboratoire</term>
<term>Energie cinétique</term>
<term>Photolyse</term>
<term>Basse pression</term>
<term>Fluorescence induite par laser</term>
<term>Efficacité</term>
<term>Transfert quantité mouvement</term>
<term>Vitesse déplacement</term>
<term>Distribution</term>
<term>Accommodation</term>
<term>Mécanisme</term>
<term>Haute température</term>
<term>Spectre excitation</term>
<term>Energie translationnelle</term>
<term>Transfert énergie</term>
<term>Structure fine</term>
<term>Etat doublet</term>
<term>Etude comparative</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C
<sub>30</sub>
H
<sub>62</sub>
, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C
<sub>30</sub>
H
<sub>50</sub>
, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C
<sub>18</sub>
H
<sub>34</sub>
O
<sub>2</sub>
, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol
<sup>-1</sup>
was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Molecular Collision Dynamics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WARING (Carla)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KING (Kerry L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BAGOT (Paul A. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COSTEN (Matthew L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MCKENDRICK (Kenneth G.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CASAVECCHIA (Piergiorgio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BROUARD (Mark)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>COSTES (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>NESBITT (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>BIESKE (Evan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>KABLE (Scott)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Engineering and Physical Sciences, Heriot- Watt University,</s1>
<s2>Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8</s1>
<s2>06123 Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road</s1>
<s2>Oxford, OX1 3QZ</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,</s1>
<s2>Boulder, CO, 80309</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Melbourne, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>University of Sydney, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA20>
<s1>8457-8469</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000191573960400</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>96 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0291070</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C
<sub>30</sub>
H
<sub>62</sub>
, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C
<sub>30</sub>
H
<sub>50</sub>
, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C
<sub>18</sub>
H
<sub>34</sub>
O
<sub>2</sub>
, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol
<sup>-1</sup>
was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01F01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Collision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Collision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Colisión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dynamique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dynamics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dinámica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Liquide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Liquid</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Líquido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diffusion inélastique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Inelastic scattering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Difusión inelástica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Acide oléique</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oleic acid</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Oleico ácido</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Référence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reference</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Referencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Phase gazeuse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Gas phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fase gaseosa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Laboratoire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Laboratory</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Laboratorio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Energie cinétique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Kinetic energy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Energía cinética</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Photolyse</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Photolysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fotolisis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Basse pression</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Low pressure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Baja presión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fluorescence induite par laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Laser induced fluorescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fluorescencia inducida por laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Efficacité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Efficiency</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Eficacia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transfert quantité mouvement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Momentum transfer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transferencia cantidad movimiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Vitesse déplacement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Speed</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Velocidad desplazamiento</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Distribution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Distribution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Distribución</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Accommodation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Accommodation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Acomodo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Mécanisme</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Mechanism</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Mecanismo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Energie translationnelle</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Translational energy</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Energía traslacional</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Transfert énergie</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Energy transfer</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Transferencia energía</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Structure fine</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Fine structure</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Estructura fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Etat doublet</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Doublet state</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Estado doblete</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>192</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0291070 INIST</NO>
<ET>Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest</ET>
<AU>WARING (Carla); KING (Kerry L.); BAGOT (Paul A. J.); COSTEN (Matthew L.); MCKENDRICK (Kenneth G.); CASAVECCHIA (Piergiorgio); BROUARD (Mark); COSTES (Michel); NESBITT (David); BIESKE (Evan); KABLE (Scott)</AU>
<AF>School of Engineering and Physical Sciences, Heriot- Watt University,/Edinburgh EH14 4AS/Royaume-Uni (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8/06123 Perugia/Italie (1 aut.); Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road/Oxford, OX1 3QZ/Royaume-Uni (2 aut.); Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires/33405 Talence/France (3 aut.); JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,/Boulder, CO, 80309/Etats-Unis (4 aut.); University of Melbourne, School of Chemistry/Australie (5 aut.); University of Sydney, School of Chemistry/Australie (6 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>PCCP. Physical chemistry chemical physics : (Print); ISSN 1463-9076; Royaume-Uni; Da. 2011; Vol. 13; No. 18; Pp. 8457-8469; Bibl. 96 ref.</SO>
<LA>Anglais</LA>
<EA>The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C
<sub>30</sub>
H
<sub>62</sub>
, 2,6,10,15,19,23-hexamethyltetracosane); squalene (C
<sub>30</sub>
H
<sub>50</sub>
, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C
<sub>18</sub>
H
<sub>34</sub>
O
<sub>2</sub>
, cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol
<sup>-1</sup>
was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and A-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.</EA>
<CC>001C01; 001C01F01</CC>
<FD>Collision; Dynamique; Liquide; Diffusion inélastique; Acide oléique; Référence; Phase gazeuse; Laboratoire; Energie cinétique; Photolyse; Basse pression; Fluorescence induite par laser; Efficacité; Transfert quantité mouvement; Vitesse déplacement; Distribution; Accommodation; Mécanisme; Haute température; Spectre excitation; Energie translationnelle; Transfert énergie; Structure fine; Etat doublet; Etude comparative</FD>
<ED>Collision; Dynamics; Liquid; Inelastic scattering; Oleic acid; Reference; Gas phase; Laboratory; Kinetic energy; Photolysis; Low pressure; Laser induced fluorescence; Efficiency; Momentum transfer; Speed; Distribution; Accommodation; Mechanism; High temperature; Excitation spectrum; Translational energy; Energy transfer; Fine structure; Doublet state; Comparative study</ED>
<SD>Colisión; Dinámica; Líquido; Difusión inelástica; Oleico ácido; Referencia; Fase gaseosa; Laboratorio; Energía cinética; Fotolisis; Baja presión; Fluorescencia inducida por laser; Eficacia; Transferencia cantidad movimiento; Velocidad desplazamiento; Distribución; Acomodo; Mecanismo; Alta temperatura; Espectro excitación; Energía traslacional; Transferencia energía; Estructura fina; Estado doblete; Estudio comparativo</SD>
<LO>INIST-26801.354000191573960400</LO>
<ID>11-0291070</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001B79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0291070
   |texte=   Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024