Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding

Identifieur interne : 001941 ( PascalFrancis/Corpus ); précédent : 001940; suivant : 001942

A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding

Auteurs : Anthony B. Murphy

Source :

RBID : Pascal:11-0420642

Descripteurs français

English descriptors

Abstract

The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-3727
A02 01      @0 JPAPBE
A03   1    @0 J. phys., D. Appl. phys. : (Print)
A05       @2 44
A06       @2 19
A08 01  1  ENG  @1 A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding
A09 01  1  ENG  @1 Articles arising from the 11th High-Tech Plasma Processes Conference
A11 01  1    @1 MURPHY (Anthony B.)
A12 01  1    @1 BRUGGEMAN (Peter) @9 ed.
A12 02  1    @1 DEGREZ (Gérard) @9 ed.
A12 03  1    @1 DELPLANCKE (Marie-Paule) @9 ed.
A12 04  1    @1 GLEIZES (Alain)
A14 01      @1 CSIRO Materials Science and Engineering, PO Box 218 @2 Lindfield NSW 2070 @3 AUS @Z 1 aut.
A15 01      @1 Eindhoven University of Technology @2 Eindhoven @3 NLD @Z 1 aut.
A15 02      @1 Université Libre de Bruxelles @2 Brussels @3 BEL @Z 2 aut. @Z 3 aut.
A15 03      @1 Université de Toulouse @2 Toulouse @3 FRA @Z 4 aut.
A20       @2 194009.1-194009.11
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 5841 @5 354000191562650090
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 44 ref.
A47 01  1    @0 11-0420642
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. D, Applied physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.
C02 01  3    @0 001B50B77F
C02 02  3    @0 001B50B80M
C03 01  3  FRE  @0 Soudage arc @5 03
C03 01  3  ENG  @0 Arc welding @5 03
C03 02  3  FRE  @0 Transfert énergie @5 04
C03 02  3  ENG  @0 Energy transfer @5 04
C03 03  X  FRE  @0 Modèle 3 dimensions @5 23
C03 03  X  ENG  @0 Three dimensional model @5 23
C03 03  X  SPA  @0 Modelo 3 dimensiones @5 23
C03 04  3  FRE  @0 Densité courant @5 41
C03 04  3  ENG  @0 Current density @5 41
C03 05  3  FRE  @0 Distribution courant @5 42
C03 05  3  ENG  @0 Current distribution @5 42
C03 06  X  FRE  @0 Distribution densité @5 43
C03 06  X  ENG  @0 Density distribution @5 43
C03 06  X  SPA  @0 Distribución densidad @5 43
C03 07  3  FRE  @0 Champ température @5 44
C03 07  3  ENG  @0 Temperature distribution @5 44
C03 08  X  FRE  @0 Arc plasma @5 61
C03 08  X  ENG  @0 Plasma arc @5 61
C03 08  X  SPA  @0 Arco plasma @5 61
C03 09  3  FRE  @0 Aluminium @2 NC @5 62
C03 09  3  ENG  @0 Aluminium @2 NC @5 62
C03 10  3  FRE  @0 5277F @4 INC @5 91
C03 11  3  FRE  @0 5280M @4 INC @5 92
N21       @1 290
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0420642 INIST
ET : A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding
AU : MURPHY (Anthony B.); BRUGGEMAN (Peter); DEGREZ (Gérard); DELPLANCKE (Marie-Paule); GLEIZES (Alain)
AF : CSIRO Materials Science and Engineering, PO Box 218/Lindfield NSW 2070/Australie (1 aut.); Eindhoven University of Technology/Eindhoven/Pays-Bas (1 aut.); Université Libre de Bruxelles/Brussels/Belgique (2 aut., 3 aut.); Université de Toulouse/Toulouse/France (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2011; Vol. 44; No. 19; 194009.1-194009.11; Bibl. 44 ref.
LA : Anglais
EA : The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.
CC : 001B50B77F; 001B50B80M
FD : Soudage arc; Transfert énergie; Modèle 3 dimensions; Densité courant; Distribution courant; Distribution densité; Champ température; Arc plasma; Aluminium; 5277F; 5280M
ED : Arc welding; Energy transfer; Three dimensional model; Current density; Current distribution; Density distribution; Temperature distribution; Plasma arc; Aluminium
SD : Modelo 3 dimensiones; Distribución densidad; Arco plasma
LO : INIST-5841.354000191562650090
ID : 11-0420642

Links to Exploration step

Pascal:11-0420642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding</title>
<author>
<name sortKey="Murphy, Anthony B" sort="Murphy, Anthony B" uniqKey="Murphy A" first="Anthony B." last="Murphy">Anthony B. Murphy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Materials Science and Engineering, PO Box 218</s1>
<s2>Lindfield NSW 2070</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0420642</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0420642 INIST</idno>
<idno type="RBID">Pascal:11-0420642</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001941</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding</title>
<author>
<name sortKey="Murphy, Anthony B" sort="Murphy, Anthony B" uniqKey="Murphy A" first="Anthony B." last="Murphy">Anthony B. Murphy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Materials Science and Engineering, PO Box 218</s1>
<s2>Lindfield NSW 2070</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium</term>
<term>Arc welding</term>
<term>Current density</term>
<term>Current distribution</term>
<term>Density distribution</term>
<term>Energy transfer</term>
<term>Plasma arc</term>
<term>Temperature distribution</term>
<term>Three dimensional model</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Soudage arc</term>
<term>Transfert énergie</term>
<term>Modèle 3 dimensions</term>
<term>Densité courant</term>
<term>Distribution courant</term>
<term>Distribution densité</term>
<term>Champ température</term>
<term>Arc plasma</term>
<term>Aluminium</term>
<term>5277F</term>
<term>5280M</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Articles arising from the 11th High-Tech Plasma Processes Conference</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MURPHY (Anthony B.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BRUGGEMAN (Peter)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DEGREZ (Gérard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>DELPLANCKE (Marie-Paule)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>GLEIZES (Alain)</s1>
</fA12>
<fA14 i1="01">
<s1>CSIRO Materials Science and Engineering, PO Box 218</s1>
<s2>Lindfield NSW 2070</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Eindhoven University of Technology</s1>
<s2>Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Université Libre de Bruxelles</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Université de Toulouse</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s2>194009.1-194009.11</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000191562650090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0420642</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B77F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B50B80M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Soudage arc</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Arc welding</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>41</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Current density</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Distribution courant</s0>
<s5>42</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Current distribution</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Distribution densité</s0>
<s5>43</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Density distribution</s0>
<s5>43</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Distribución densidad</s0>
<s5>43</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Champ température</s0>
<s5>44</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature distribution</s0>
<s5>44</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Arc plasma</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Plasma arc</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Arco plasma</s0>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>5277F</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>5280M</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>290</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0420642 INIST</NO>
<ET>A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding</ET>
<AU>MURPHY (Anthony B.); BRUGGEMAN (Peter); DEGREZ (Gérard); DELPLANCKE (Marie-Paule); GLEIZES (Alain)</AU>
<AF>CSIRO Materials Science and Engineering, PO Box 218/Lindfield NSW 2070/Australie (1 aut.); Eindhoven University of Technology/Eindhoven/Pays-Bas (1 aut.); Université Libre de Bruxelles/Brussels/Belgique (2 aut., 3 aut.); Université de Toulouse/Toulouse/France (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. D, Applied physics : (Print); ISSN 0022-3727; Coden JPAPBE; Royaume-Uni; Da. 2011; Vol. 44; No. 19; 194009.1-194009.11; Bibl. 44 ref.</SO>
<LA>Anglais</LA>
<EA>The development of a three-dimensional computational model of gas-metal arc welding is described. The wire electrode, arc plasma and weld pool are included in the computational domain self-consistently. The model takes into account the motion of the electrode, flow in the weld pool, deformation of the weld-pool surface and the influence of metal droplet transfer. Results are presented for welding of an aluminium alloy. The current density distribution at the interface between the arc and the weld pool is strongly dependent on the surface profile of the weld pool. This in turn affects the temperature distribution in the weld pool. The momentum transferred by the droplet affects the direction of flow in the weld pool, and together with the energy transfer, increases the weld-pool depth. The results demonstrate the importance of including the arc plasma in the computational domain. Fair agreement is found between a measured weld profile and the predictions of the model. Inclusion of the influence of metal vapour in the model is expected to improve the agreement.</EA>
<CC>001B50B77F; 001B50B80M</CC>
<FD>Soudage arc; Transfert énergie; Modèle 3 dimensions; Densité courant; Distribution courant; Distribution densité; Champ température; Arc plasma; Aluminium; 5277F; 5280M</FD>
<ED>Arc welding; Energy transfer; Three dimensional model; Current density; Current distribution; Density distribution; Temperature distribution; Plasma arc; Aluminium</ED>
<SD>Modelo 3 dimensiones; Distribución densidad; Arco plasma</SD>
<LO>INIST-5841.354000191562650090</LO>
<ID>11-0420642</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001941 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001941 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0420642
   |texte=   A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024