Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization

Identifieur interne : 001884 ( PascalFrancis/Corpus ); précédent : 001883; suivant : 001885

Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization

Auteurs : CHING YEH LIN ; Sylvain R. A. Marque ; Kizysztof Matyjaszewski ; Michelle L. Coote

Source :

RBID : Pascal:11-0461370

Descripteurs français

English descriptors

Abstract

A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH3-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0024-9297
A02 01      @0 MAMOBX
A03   1    @0 Macromolecules : (Print)
A05       @2 44
A06       @2 19
A08 01  1  ENG  @1 Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization
A11 01  1    @1 CHING YEH LIN
A11 02  1    @1 MARQUE (Sylvain R. A.)
A11 03  1    @1 MATYJASZEWSKI (Kizysztof)
A11 04  1    @1 COOTE (Michelle L.)
A14 01      @1 ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University @2 Canberra ACT 0200 @3 AUS @Z 1 aut. @Z 4 aut.
A14 02      @1 UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen @2 13397 Marseille @3 FRA @Z 2 aut.
A14 03      @1 Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue @2 Pittsburgh, Pennsylvania 15213 @3 USA @Z 3 aut.
A20       @1 7568-7583
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 13789 @5 354000507204170100
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 31 ref.
A47 01  1    @0 11-0461370
A60       @1 P
A61       @0 A
A64 01  1    @0 Macromolecules : (Print)
A66 01      @0 USA
C01 01    ENG  @0 A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH3-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.
C02 01  X    @0 001D09D02B
C03 01  X  FRE  @0 Stabilisant masse moléculaire @5 01
C03 01  X  ENG  @0 Polymerization modifier @5 01
C03 01  X  SPA  @0 Estabilizador masa molecular @5 01
C03 02  X  FRE  @0 Dithioester @1 ACT @5 02
C03 02  X  ENG  @0 Dithioester @1 ACT @5 02
C03 02  X  SPA  @0 Ditioester @1 ACT @5 02
C03 03  X  FRE  @0 Dithiocarbonate organique @1 ACT @5 03
C03 03  X  ENG  @0 Organic dithiocarbonate @1 ACT @5 03
C03 03  X  SPA  @0 Ditiocarbonato orgánico @1 ACT @5 03
C03 04  X  FRE  @0 Trithiocarbonate organique @1 ACT @5 04
C03 04  X  ENG  @0 Organic trithiocarbonate @1 ACT @5 04
C03 04  X  SPA  @0 Tritiocarbonato orgánico @1 ACT @5 04
C03 05  X  FRE  @0 Amorceur radicalaire @5 05
C03 05  X  ENG  @0 Radical catalyst @5 05
C03 05  X  SPA  @0 Iniciador radical @5 05
C03 06  X  FRE  @0 Halogène Composé organique @2 NC @2 NA @5 06
C03 06  X  ENG  @0 Halogen Organic compounds @2 NC @2 NA @5 06
C03 06  X  SPA  @0 Halógeno Compuesto orgánico @2 NC @2 NA @5 06
C03 07  X  FRE  @0 Nitroxyle @5 07
C03 07  X  ENG  @0 Nitroxyl @5 07
C03 07  X  SPA  @0 Nitroxilo @5 07
C03 08  X  FRE  @0 Energie liaison @5 08
C03 08  X  ENG  @0 Binding energy @5 08
C03 08  X  SPA  @0 Energía enlace @5 08
C03 09  X  FRE  @0 Relation structure activité @5 10
C03 09  X  ENG  @0 Structure activity relation @5 10
C03 09  X  SPA  @0 Relación estructura actividad @5 10
C03 10  X  FRE  @0 Relation structure propriété @5 11
C03 10  X  ENG  @0 Property structure relationship @5 11
C03 10  X  SPA  @0 Relación estructura propiedad @5 11
C03 11  X  FRE  @0 Activité amorceur @5 12
C03 11  X  ENG  @0 Priming activity @5 12
C03 11  X  SPA  @0 Actividad trampa @5 12
C03 12  X  FRE  @0 Réactivité chimique @5 13
C03 12  X  ENG  @0 Chemical reactivity @5 13
C03 12  X  SPA  @0 Reactividad química @5 13
C03 13  X  FRE  @0 Transfert chaîne @5 14
C03 13  X  ENG  @0 Chain transfer @5 14
C03 13  X  SPA  @0 Transferencia en cadena @5 14
C03 14  X  FRE  @0 Polymérisation radicalaire @5 15
C03 14  X  ENG  @0 Free radical polymerization @5 15
C03 14  X  SPA  @0 Polimerización radicalar @5 15
C03 15  X  FRE  @0 Polymérisation transfert atome @5 16
C03 15  X  ENG  @0 Atom transfer polymerization @5 16
C03 15  X  SPA  @0 Polimerización transferencia atomo @5 16
C03 16  X  FRE  @0 Polymère vivant @5 17
C03 16  X  ENG  @0 Living polymer @5 17
C03 16  X  SPA  @0 Polímero viviente @5 17
C03 17  X  FRE  @0 Effet substituant @5 18
C03 17  X  ENG  @0 Substituent effect @5 18
C03 17  X  SPA  @0 Efecto sustituyente @5 18
C03 18  X  FRE  @0 Modélisation @5 19
C03 18  X  ENG  @0 Modeling @5 19
C03 18  X  SPA  @0 Modelización @5 19
C03 19  X  FRE  @0 Méthode MO @5 20
C03 19  X  ENG  @0 MO method @5 20
C03 19  X  SPA  @0 Método orbital molecular @5 20
C03 20  X  FRE  @0 Méthode ab initio @5 21
C03 20  X  ENG  @0 Ab initio method @5 21
C03 20  X  SPA  @0 Método ab initio @5 21
C03 21  X  FRE  @0 Etude théorique @5 22
C03 21  X  ENG  @0 Theoretical study @5 22
C03 21  X  SPA  @0 Estudio teórico @5 22
C03 22  X  FRE  @0 Agent transfert chaîne @4 INC @5 32
C03 23  X  FRE  @0 Addition fragmentation réversible @4 INC @5 33
C03 24  X  FRE  @0 Polymérisation médiée nitroxyle @4 INC @5 34
C03 25  X  FRE  @0 Energie libre dissociation liaison @4 INC @5 35
N21       @1 319
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 11-0461370 INIST
ET : Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization
AU : CHING YEH LIN; MARQUE (Sylvain R. A.); MATYJASZEWSKI (Kizysztof); COOTE (Michelle L.)
AF : ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University/Canberra ACT 0200/Australie (1 aut., 4 aut.); UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen/13397 Marseille/France (2 aut.); Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue/Pittsburgh, Pennsylvania 15213/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2011; Vol. 44; No. 19; Pp. 7568-7583; Bibl. 31 ref.
LA : Anglais
EA : A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH3-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.
CC : 001D09D02B
FD : Stabilisant masse moléculaire; Dithioester; Dithiocarbonate organique; Trithiocarbonate organique; Amorceur radicalaire; Halogène Composé organique; Nitroxyle; Energie liaison; Relation structure activité; Relation structure propriété; Activité amorceur; Réactivité chimique; Transfert chaîne; Polymérisation radicalaire; Polymérisation transfert atome; Polymère vivant; Effet substituant; Modélisation; Méthode MO; Méthode ab initio; Etude théorique; Agent transfert chaîne; Addition fragmentation réversible; Polymérisation médiée nitroxyle; Energie libre dissociation liaison
ED : Polymerization modifier; Dithioester; Organic dithiocarbonate; Organic trithiocarbonate; Radical catalyst; Halogen Organic compounds; Nitroxyl; Binding energy; Structure activity relation; Property structure relationship; Priming activity; Chemical reactivity; Chain transfer; Free radical polymerization; Atom transfer polymerization; Living polymer; Substituent effect; Modeling; MO method; Ab initio method; Theoretical study
SD : Estabilizador masa molecular; Ditioester; Ditiocarbonato orgánico; Tritiocarbonato orgánico; Iniciador radical; Halógeno Compuesto orgánico; Nitroxilo; Energía enlace; Relación estructura actividad; Relación estructura propiedad; Actividad trampa; Reactividad química; Transferencia en cadena; Polimerización radicalar; Polimerización transferencia atomo; Polímero viviente; Efecto sustituyente; Modelización; Método orbital molecular; Método ab initio; Estudio teórico
LO : INIST-13789.354000507204170100
ID : 11-0461370

Links to Exploration step

Pascal:11-0461370

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization</title>
<author>
<name sortKey="Ching Yeh Lin" sort="Ching Yeh Lin" uniqKey="Ching Yeh Lin" last="Ching Yeh Lin">CHING YEH LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marque, Sylvain R A" sort="Marque, Sylvain R A" uniqKey="Marque S" first="Sylvain R. A." last="Marque">Sylvain R. A. Marque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Kizysztof" sort="Matyjaszewski, Kizysztof" uniqKey="Matyjaszewski K" first="Kizysztof" last="Matyjaszewski">Kizysztof Matyjaszewski</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coote, Michelle L" sort="Coote, Michelle L" uniqKey="Coote M" first="Michelle L." last="Coote">Michelle L. Coote</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0461370</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0461370 INIST</idno>
<idno type="RBID">Pascal:11-0461370</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization</title>
<author>
<name sortKey="Ching Yeh Lin" sort="Ching Yeh Lin" uniqKey="Ching Yeh Lin" last="Ching Yeh Lin">CHING YEH LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marque, Sylvain R A" sort="Marque, Sylvain R A" uniqKey="Marque S" first="Sylvain R. A." last="Marque">Sylvain R. A. Marque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Kizysztof" sort="Matyjaszewski, Kizysztof" uniqKey="Matyjaszewski K" first="Kizysztof" last="Matyjaszewski">Kizysztof Matyjaszewski</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coote, Michelle L" sort="Coote, Michelle L" uniqKey="Coote M" first="Michelle L." last="Coote">Michelle L. Coote</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio method</term>
<term>Atom transfer polymerization</term>
<term>Binding energy</term>
<term>Chain transfer</term>
<term>Chemical reactivity</term>
<term>Dithioester</term>
<term>Free radical polymerization</term>
<term>Halogen Organic compounds</term>
<term>Living polymer</term>
<term>MO method</term>
<term>Modeling</term>
<term>Nitroxyl</term>
<term>Organic dithiocarbonate</term>
<term>Organic trithiocarbonate</term>
<term>Polymerization modifier</term>
<term>Priming activity</term>
<term>Property structure relationship</term>
<term>Radical catalyst</term>
<term>Structure activity relation</term>
<term>Substituent effect</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Stabilisant masse moléculaire</term>
<term>Dithioester</term>
<term>Dithiocarbonate organique</term>
<term>Trithiocarbonate organique</term>
<term>Amorceur radicalaire</term>
<term>Halogène Composé organique</term>
<term>Nitroxyle</term>
<term>Energie liaison</term>
<term>Relation structure activité</term>
<term>Relation structure propriété</term>
<term>Activité amorceur</term>
<term>Réactivité chimique</term>
<term>Transfert chaîne</term>
<term>Polymérisation radicalaire</term>
<term>Polymérisation transfert atome</term>
<term>Polymère vivant</term>
<term>Effet substituant</term>
<term>Modélisation</term>
<term>Méthode MO</term>
<term>Méthode ab initio</term>
<term>Etude théorique</term>
<term>Agent transfert chaîne</term>
<term>Addition fragmentation réversible</term>
<term>Polymérisation médiée nitroxyle</term>
<term>Energie libre dissociation liaison</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH
<sub>3</sub>
-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0024-9297</s0>
</fA01>
<fA02 i1="01">
<s0>MAMOBX</s0>
</fA02>
<fA03 i2="1">
<s0>Macromolecules : (Print)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHING YEH LIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MARQUE (Sylvain R. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MATYJASZEWSKI (Kizysztof)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COOTE (Michelle L.)</s1>
</fA11>
<fA14 i1="01">
<s1>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue</s1>
<s2>Pittsburgh, Pennsylvania 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>7568-7583</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13789</s2>
<s5>354000507204170100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0461370</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Macromolecules : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH
<sub>3</sub>
-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D02B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Stabilisant masse moléculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Polymerization modifier</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estabilizador masa molecular</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dithioester</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dithioester</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ditioester</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dithiocarbonate organique</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Organic dithiocarbonate</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ditiocarbonato orgánico</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Trithiocarbonate organique</s0>
<s1>ACT</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Organic trithiocarbonate</s0>
<s1>ACT</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Tritiocarbonato orgánico</s0>
<s1>ACT</s1>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Amorceur radicalaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Radical catalyst</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Iniciador radical</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Halogène Composé organique</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Halogen Organic compounds</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Halógeno Compuesto orgánico</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nitroxyle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nitroxyl</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nitroxilo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Energie liaison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Binding energy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Energía enlace</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Relation structure activité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Structure activity relation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Relación estructura actividad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Relation structure propriété</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Property structure relationship</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Relación estructura propiedad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Activité amorceur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Priming activity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Actividad trampa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Réactivité chimique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Chemical reactivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Reactividad química</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Transfert chaîne</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Chain transfer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Transferencia en cadena</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Polymérisation radicalaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Free radical polymerization</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Polimerización radicalar</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polymérisation transfert atome</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Atom transfer polymerization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Polimerización transferencia atomo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Polymère vivant</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Living polymer</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Polímero viviente</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Effet substituant</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Substituent effect</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Efecto sustituyente</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Méthode MO</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>MO method</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Método orbital molecular</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Méthode ab initio</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Ab initio method</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Método ab initio</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Agent transfert chaîne</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Addition fragmentation réversible</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Polymérisation médiée nitroxyle</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Energie libre dissociation liaison</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fN21>
<s1>319</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0461370 INIST</NO>
<ET>Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization</ET>
<AU>CHING YEH LIN; MARQUE (Sylvain R. A.); MATYJASZEWSKI (Kizysztof); COOTE (Michelle L.)</AU>
<AF>ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University/Canberra ACT 0200/Australie (1 aut., 4 aut.); UMR 6264 Laboratoire Chimie Provence, case 521, Universite de Provence, Avenue Escadrille Normandie Niemen/13397 Marseille/France (2 aut.); Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue/Pittsburgh, Pennsylvania 15213/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2011; Vol. 44; No. 19; Pp. 7568-7583; Bibl. 31 ref.</SO>
<LA>Anglais</LA>
<EA>A set of 303 R-X bond dissociation free energies (BDFEs) at 298.15 K in acetonitrile, along with corresponding values of polar, steric and radical stability or resonance descriptors for each R-group and X-group, has been calculated at the G3(MP2)-RAD level of theory in conjunction with CPCM solvation energies. The R-groups were chosen to cover the broad spectrum of steric, polar and radical stability properties of propagating polymeric radicals, while the X-groups included a variety of nitroxides, dithioester fragments (========dot;SC(Z)=S) and halogens, chosen to be representative of control agents used in nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). The data have been used to design, parametrize and test a linear free energy relationship that can predict the BDFEs of any R and X combination based on the polar, steric and radical stability or resonance properties of the separate R and X groups. The final equation is BDFE[R-X]=-20.8 θ[R] - 9.73 IP[R] - 1.10 RSE[R] + 192 θ[x] + 57.4 EA[X] - 62.0 Resonance[X] - 250, where the steric descriptors θ[R] and θ[x] are measured as Tolman's cone angle of Cl-R and CH
<sub>3</sub>
-X respectively, the polar descriptors IP[R] and EA[X] are the (gas-phase) ionization energy of R========dot; and electron affinity of X========dot; respectively, and the radical stability or resonance descriptors RSE[R] and Resonance[X] are measured as the standard radical stabilization energy for R========dot; and the inverse HOMO-LUMO energy gap for X========dot;. This general model was also fitted to the individual cases of ATRP, RAFT, and NMP and was used to analyze similarities and differences in structure-reactivity trends among the different types of polymerization process. We show how the equation can be used to select appropriate initial leaving goups for a given polymerization, or predict the correct sequence of monomer addition in block copolymer synthesis.</EA>
<CC>001D09D02B</CC>
<FD>Stabilisant masse moléculaire; Dithioester; Dithiocarbonate organique; Trithiocarbonate organique; Amorceur radicalaire; Halogène Composé organique; Nitroxyle; Energie liaison; Relation structure activité; Relation structure propriété; Activité amorceur; Réactivité chimique; Transfert chaîne; Polymérisation radicalaire; Polymérisation transfert atome; Polymère vivant; Effet substituant; Modélisation; Méthode MO; Méthode ab initio; Etude théorique; Agent transfert chaîne; Addition fragmentation réversible; Polymérisation médiée nitroxyle; Energie libre dissociation liaison</FD>
<ED>Polymerization modifier; Dithioester; Organic dithiocarbonate; Organic trithiocarbonate; Radical catalyst; Halogen Organic compounds; Nitroxyl; Binding energy; Structure activity relation; Property structure relationship; Priming activity; Chemical reactivity; Chain transfer; Free radical polymerization; Atom transfer polymerization; Living polymer; Substituent effect; Modeling; MO method; Ab initio method; Theoretical study</ED>
<SD>Estabilizador masa molecular; Ditioester; Ditiocarbonato orgánico; Tritiocarbonato orgánico; Iniciador radical; Halógeno Compuesto orgánico; Nitroxilo; Energía enlace; Relación estructura actividad; Relación estructura propiedad; Actividad trampa; Reactividad química; Transferencia en cadena; Polimerización radicalar; Polimerización transferencia atomo; Polímero viviente; Efecto sustituyente; Modelización; Método orbital molecular; Método ab initio; Estudio teórico</SD>
<LO>INIST-13789.354000507204170100</LO>
<ID>11-0461370</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001884 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001884 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0461370
   |texte=   Linear-Free Energy Relationships for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024