Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Morphology of swift heavy ion tracks in metallic glasses

Identifieur interne : 001587 ( PascalFrancis/Corpus ); précédent : 001586; suivant : 001588

Morphology of swift heavy ion tracks in metallic glasses

Auteurs : M. D. Rodriguez ; B. Afra ; C. Trautmann ; M. Toulemonde ; T. Bierschenk ; J. Leslie ; R. Giulian ; N. Kirby ; P. Kluth

Source :

RBID : Pascal:12-0102085

Descripteurs français

English descriptors

Abstract

Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe80B20, Fe85 B15, Fe81B13.5Si3.5C2 and Fe40Ni40B20 were irradiated with 11.1 MeV/nucleon (MeV/u) 132Xe, 152Sm, 197Au and 8.2 MeV/u 238U ions to fluences between 1 ×1010 and 1 × 10 12 ions/cm2. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-3093
A02 01      @0 JNCSBJ
A03   1    @0 J. non-cryst. solids
A05       @2 358
A06       @2 3
A08 01  1  ENG  @1 Morphology of swift heavy ion tracks in metallic glasses
A11 01  1    @1 RODRIGUEZ (M. D.)
A11 02  1    @1 AFRA (B.)
A11 03  1    @1 TRAUTMANN (C.)
A11 04  1    @1 TOULEMONDE (M.)
A11 05  1    @1 BIERSCHENK (T.)
A11 06  1    @1 LESLIE (J.)
A11 07  1    @1 GIULIAN (R.)
A11 08  1    @1 KIRBY (N.)
A11 09  1    @1 KLUTH (P.)
A14 01      @1 Research School of Physics and Engineering, The Australian National University @2 Canberra ACT 0200 @3 AUS @Z 1 aut. @Z 2 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 9 aut.
A14 02      @1 Gesellschaft für Schwerionenforschung (GSI) @2 64291 Darmstadt @3 DEU @Z 3 aut.
A14 03      @1 Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP) @2 Caen @3 FRA @Z 4 aut.
A14 04      @1 Australian Synchrotron, Melbourne @2 VIC 3168 @3 AUS @Z 8 aut.
A20       @1 571-576
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14572 @5 354000508894280170
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 58 ref.
A47 01  1    @0 12-0102085
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of non-crystalline solids
A66 01      @0 GBR
C01 01    ENG  @0 Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe80B20, Fe85 B15, Fe81B13.5Si3.5C2 and Fe40Ni40B20 were irradiated with 11.1 MeV/nucleon (MeV/u) 132Xe, 152Sm, 197Au and 8.2 MeV/u 238U ions to fluences between 1 ×1010 and 1 × 10 12 ions/cm2. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.
C02 01  3    @0 001B60A80J
C03 01  3  FRE  @0 Microstructure @5 02
C03 01  3  ENG  @0 Microstructure @5 02
C03 02  3  FRE  @0 Ion lourd @5 03
C03 02  3  ENG  @0 Heavy ions @5 03
C03 03  X  FRE  @0 Irradiation ion @5 04
C03 03  X  ENG  @0 Ion irradiation @5 04
C03 03  X  SPA  @0 Irradiación ión @5 04
C03 04  3  FRE  @0 Rayonnement synchrotron @5 05
C03 04  3  ENG  @0 Synchrotron radiation @5 05
C03 05  X  FRE  @0 Diffusion RX centrale @5 06
C03 05  X  ENG  @0 Small angle X ray scattering @5 06
C03 05  X  SPA  @0 Difusión rayo X central @5 06
C03 06  3  FRE  @0 Effet rayonnement @5 07
C03 06  3  ENG  @0 Radiation effects @5 07
C03 07  X  FRE  @0 Fluence @5 08
C03 07  X  ENG  @0 Fluence @5 08
C03 07  X  SPA  @0 Fluencia @5 08
C03 08  3  FRE  @0 Densité électron @5 09
C03 08  3  ENG  @0 Electron density @5 09
C03 09  3  FRE  @0 Diffusion inélastique @5 10
C03 09  3  ENG  @0 Inelastic scattering @5 10
C03 10  3  FRE  @0 Interaction électron phonon @5 11
C03 10  3  ENG  @0 Electron-phonon interactions @5 11
C03 11  3  FRE  @0 Verre métallique @5 15
C03 11  3  ENG  @0 Metallic glasses @5 15
C03 12  3  FRE  @0 Alliage base fer @2 NK @5 16
C03 12  3  ENG  @0 Iron base alloys @2 NK @5 16
C03 13  3  FRE  @0 Métal transition alliage @5 48
C03 13  3  ENG  @0 Transition element alloys @5 48
N21       @1 079

Format Inist (serveur)

NO : PASCAL 12-0102085 INIST
ET : Morphology of swift heavy ion tracks in metallic glasses
AU : RODRIGUEZ (M. D.); AFRA (B.); TRAUTMANN (C.); TOULEMONDE (M.); BIERSCHENK (T.); LESLIE (J.); GIULIAN (R.); KIRBY (N.); KLUTH (P.)
AF : Research School of Physics and Engineering, The Australian National University/Canberra ACT 0200/Australie (1 aut., 2 aut., 5 aut., 6 aut., 7 aut., 9 aut.); Gesellschaft für Schwerionenforschung (GSI)/64291 Darmstadt/Allemagne (3 aut.); Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP)/Caen/France (4 aut.); Australian Synchrotron, Melbourne/VIC 3168/Australie (8 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of non-crystalline solids; ISSN 0022-3093; Coden JNCSBJ; Royaume-Uni; Da. 2012; Vol. 358; No. 3; Pp. 571-576; Bibl. 58 ref.
LA : Anglais
EA : Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe80B20, Fe85 B15, Fe81B13.5Si3.5C2 and Fe40Ni40B20 were irradiated with 11.1 MeV/nucleon (MeV/u) 132Xe, 152Sm, 197Au and 8.2 MeV/u 238U ions to fluences between 1 ×1010 and 1 × 10 12 ions/cm2. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.
CC : 001B60A80J
FD : Microstructure; Ion lourd; Irradiation ion; Rayonnement synchrotron; Diffusion RX centrale; Effet rayonnement; Fluence; Densité électron; Diffusion inélastique; Interaction électron phonon; Verre métallique; Alliage base fer; Métal transition alliage
ED : Microstructure; Heavy ions; Ion irradiation; Synchrotron radiation; Small angle X ray scattering; Radiation effects; Fluence; Electron density; Inelastic scattering; Electron-phonon interactions; Metallic glasses; Iron base alloys; Transition element alloys
SD : Irradiación ión; Difusión rayo X central; Fluencia
LO : INIST-14572.354000508894280170
ID : 12-0102085

Links to Exploration step

Pascal:12-0102085

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Morphology of swift heavy ion tracks in metallic glasses</title>
<author>
<name sortKey="Rodriguez, M D" sort="Rodriguez, M D" uniqKey="Rodriguez M" first="M. D." last="Rodriguez">M. D. Rodriguez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Afra, B" sort="Afra, B" uniqKey="Afra B" first="B." last="Afra">B. Afra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trautmann, C" sort="Trautmann, C" uniqKey="Trautmann C" first="C." last="Trautmann">C. Trautmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Gesellschaft für Schwerionenforschung (GSI)</s1>
<s2>64291 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Toulemonde, M" sort="Toulemonde, M" uniqKey="Toulemonde M" first="M." last="Toulemonde">M. Toulemonde</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP)</s1>
<s2>Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bierschenk, T" sort="Bierschenk, T" uniqKey="Bierschenk T" first="T." last="Bierschenk">T. Bierschenk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leslie, J" sort="Leslie, J" uniqKey="Leslie J" first="J." last="Leslie">J. Leslie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giulian, R" sort="Giulian, R" uniqKey="Giulian R" first="R." last="Giulian">R. Giulian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kirby, N" sort="Kirby, N" uniqKey="Kirby N" first="N." last="Kirby">N. Kirby</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Australian Synchrotron, Melbourne</s1>
<s2>VIC 3168</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kluth, P" sort="Kluth, P" uniqKey="Kluth P" first="P." last="Kluth">P. Kluth</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0102085</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0102085 INIST</idno>
<idno type="RBID">Pascal:12-0102085</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001587</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Morphology of swift heavy ion tracks in metallic glasses</title>
<author>
<name sortKey="Rodriguez, M D" sort="Rodriguez, M D" uniqKey="Rodriguez M" first="M. D." last="Rodriguez">M. D. Rodriguez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Afra, B" sort="Afra, B" uniqKey="Afra B" first="B." last="Afra">B. Afra</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trautmann, C" sort="Trautmann, C" uniqKey="Trautmann C" first="C." last="Trautmann">C. Trautmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Gesellschaft für Schwerionenforschung (GSI)</s1>
<s2>64291 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Toulemonde, M" sort="Toulemonde, M" uniqKey="Toulemonde M" first="M." last="Toulemonde">M. Toulemonde</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP)</s1>
<s2>Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bierschenk, T" sort="Bierschenk, T" uniqKey="Bierschenk T" first="T." last="Bierschenk">T. Bierschenk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leslie, J" sort="Leslie, J" uniqKey="Leslie J" first="J." last="Leslie">J. Leslie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giulian, R" sort="Giulian, R" uniqKey="Giulian R" first="R." last="Giulian">R. Giulian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kirby, N" sort="Kirby, N" uniqKey="Kirby N" first="N." last="Kirby">N. Kirby</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Australian Synchrotron, Melbourne</s1>
<s2>VIC 3168</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kluth, P" sort="Kluth, P" uniqKey="Kluth P" first="P." last="Kluth">P. Kluth</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron density</term>
<term>Electron-phonon interactions</term>
<term>Fluence</term>
<term>Heavy ions</term>
<term>Inelastic scattering</term>
<term>Ion irradiation</term>
<term>Iron base alloys</term>
<term>Metallic glasses</term>
<term>Microstructure</term>
<term>Radiation effects</term>
<term>Small angle X ray scattering</term>
<term>Synchrotron radiation</term>
<term>Transition element alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microstructure</term>
<term>Ion lourd</term>
<term>Irradiation ion</term>
<term>Rayonnement synchrotron</term>
<term>Diffusion RX centrale</term>
<term>Effet rayonnement</term>
<term>Fluence</term>
<term>Densité électron</term>
<term>Diffusion inélastique</term>
<term>Interaction électron phonon</term>
<term>Verre métallique</term>
<term>Alliage base fer</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe
<sub>80</sub>
B
<sub>20</sub>
, Fe
<sub>85</sub>
B
<sub>15</sub>
, Fe
<sub>81</sub>
B
<sub>13.5</sub>
Si
<sub>3.5</sub>
C
<sub>2</sub>
and Fe
<sub>40</sub>
Ni
<sub>40</sub>
B
<sub>20</sub>
were irradiated with 11.1 MeV/nucleon (MeV/u)
<sup>132</sup>
Xe,
<sup>152</sup>
S
<sub>m</sub>
,
<sup>197</sup>
Au and 8.2 MeV/u
<sup>238</sup>
U ions to fluences between 1 ×10
<sup>10</sup>
and 1 × 10
<sup> 12</sup>
ions/cm
<sup>2</sup>
. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3093</s0>
</fA01>
<fA02 i1="01">
<s0>JNCSBJ</s0>
</fA02>
<fA03 i2="1">
<s0>J. non-cryst. solids</s0>
</fA03>
<fA05>
<s2>358</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Morphology of swift heavy ion tracks in metallic glasses</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RODRIGUEZ (M. D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AFRA (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TRAUTMANN (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TOULEMONDE (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BIERSCHENK (T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LESLIE (J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GIULIAN (R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KIRBY (N.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KLUTH (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Gesellschaft für Schwerionenforschung (GSI)</s1>
<s2>64291 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP)</s1>
<s2>Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Australian Synchrotron, Melbourne</s1>
<s2>VIC 3168</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>571-576</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14572</s2>
<s5>354000508894280170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>58 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0102085</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of non-crystalline solids</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe
<sub>80</sub>
B
<sub>20</sub>
, Fe
<sub>85</sub>
B
<sub>15</sub>
, Fe
<sub>81</sub>
B
<sub>13.5</sub>
Si
<sub>3.5</sub>
C
<sub>2</sub>
and Fe
<sub>40</sub>
Ni
<sub>40</sub>
B
<sub>20</sub>
were irradiated with 11.1 MeV/nucleon (MeV/u)
<sup>132</sup>
Xe,
<sup>152</sup>
S
<sub>m</sub>
,
<sup>197</sup>
Au and 8.2 MeV/u
<sup>238</sup>
U ions to fluences between 1 ×10
<sup>10</sup>
and 1 × 10
<sup> 12</sup>
ions/cm
<sup>2</sup>
. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A80J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ion lourd</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Heavy ions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Irradiation ion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ion irradiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Irradiación ión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffusion RX centrale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Small angle X ray scattering</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difusión rayo X central</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fluence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fluence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fluencia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité électron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electron density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffusion inélastique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Inelastic scattering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interaction électron phonon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron-phonon interactions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Verre métallique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Metallic glasses</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Alliage base fer</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Iron base alloys</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0102085 INIST</NO>
<ET>Morphology of swift heavy ion tracks in metallic glasses</ET>
<AU>RODRIGUEZ (M. D.); AFRA (B.); TRAUTMANN (C.); TOULEMONDE (M.); BIERSCHENK (T.); LESLIE (J.); GIULIAN (R.); KIRBY (N.); KLUTH (P.)</AU>
<AF>Research School of Physics and Engineering, The Australian National University/Canberra ACT 0200/Australie (1 aut., 2 aut., 5 aut., 6 aut., 7 aut., 9 aut.); Gesellschaft für Schwerionenforschung (GSI)/64291 Darmstadt/Allemagne (3 aut.); Centre interdisciplinaire de recherche sur les Ions, les Materiaux et la Photonique (CIMAP)/Caen/France (4 aut.); Australian Synchrotron, Melbourne/VIC 3168/Australie (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of non-crystalline solids; ISSN 0022-3093; Coden JNCSBJ; Royaume-Uni; Da. 2012; Vol. 358; No. 3; Pp. 571-576; Bibl. 58 ref.</SO>
<LA>Anglais</LA>
<EA>Swift heavy ion irradiated metallic glasses were studied using synchrotron based small angle X-ray scattering (SAXS). Ribbons of Fe
<sub>80</sub>
B
<sub>20</sub>
, Fe
<sub>85</sub>
B
<sub>15</sub>
, Fe
<sub>81</sub>
B
<sub>13.5</sub>
Si
<sub>3.5</sub>
C
<sub>2</sub>
and Fe
<sub>40</sub>
Ni
<sub>40</sub>
B
<sub>20</sub>
were irradiated with 11.1 MeV/nucleon (MeV/u)
<sup>132</sup>
Xe,
<sup>152</sup>
S
<sub>m</sub>
,
<sup>197</sup>
Au and 8.2 MeV/u
<sup>238</sup>
U ions to fluences between 1 ×10
<sup>10</sup>
and 1 × 10
<sup> 12</sup>
ions/cm
<sup>2</sup>
. The SAXS measurements provide evidence for the formation of ion tracks and allow a quantitative analysis of the track ensemble in all studied materials. The ion tracks have been well described by cylinders with abrupt boundaries and an electronic density change of (0.03 ± 0.01)% between track and matrix material. An inelastic thermal spike model was fitted to the experimental track radii to determine the critical energy density required to create an ion track. Despite the similar energy loss and track cross-sections, 30% higher track creation threshold is apparent for the binary alloys.</EA>
<CC>001B60A80J</CC>
<FD>Microstructure; Ion lourd; Irradiation ion; Rayonnement synchrotron; Diffusion RX centrale; Effet rayonnement; Fluence; Densité électron; Diffusion inélastique; Interaction électron phonon; Verre métallique; Alliage base fer; Métal transition alliage</FD>
<ED>Microstructure; Heavy ions; Ion irradiation; Synchrotron radiation; Small angle X ray scattering; Radiation effects; Fluence; Electron density; Inelastic scattering; Electron-phonon interactions; Metallic glasses; Iron base alloys; Transition element alloys</ED>
<SD>Irradiación ión; Difusión rayo X central; Fluencia</SD>
<LO>INIST-14572.354000508894280170</LO>
<ID>12-0102085</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001587 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001587 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0102085
   |texte=   Morphology of swift heavy ion tracks in metallic glasses
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024