Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering

Identifieur interne : 001405 ( PascalFrancis/Corpus ); précédent : 001404; suivant : 001406

Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering

Auteurs : HUAN ZHANG ; Arthur K. Scholz ; Jordan De Crevoisier ; Fabien Vion-Loisel ; Gilles Besnard ; Alexander Hexemer ; Hugh R. Brown ; Edward J. Kramer ; Costantino Cretin

Source :

RBID : Pascal:12-0204575

Descripteurs français

English descriptors

Abstract

Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q0, where Q0 is the invariant before deformation, greatly increased above a critical extension ratio λonset which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λonset are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σonset (25 MPa) was observed when the filler volume fraction φCB was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density νC in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0024-9297
A02 01      @0 MAMOBX
A03   1    @0 Macromolecules : (Print)
A05       @2 45
A06       @2 3
A08 01  1  ENG  @1 Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering
A11 01  1    @1 HUAN ZHANG
A11 02  1    @1 SCHOLZ (Arthur K.)
A11 03  1    @1 DE CREVOISIER (Jordan)
A11 04  1    @1 VION-LOISEL (Fabien)
A11 05  1    @1 BESNARD (Gilles)
A11 06  1    @1 HEXEMER (Alexander)
A11 07  1    @1 BROWN (Hugh R.)
A11 08  1    @1 KRAMER (Edward J.)
A11 09  1    @1 CRETIN (Costantino)
A14 01      @1 Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin @2 75005 Paris @3 FRA @Z 1 aut. @Z 3 aut. @Z 9 aut.
A14 02      @1 Materials Research Laboratory, University of California @2 Santa Barbara, California 93106 @3 USA @Z 2 aut. @Z 8 aut.
A14 03      @1 Department of Materials, University of California @2 Santa Barbara, California 93106 @3 USA @Z 2 aut. @Z 8 aut.
A14 04      @1 Department of Chemical Engineering, University of California @2 Santa Barbara, California 93106 @3 USA @Z 8 aut.
A14 05      @1 Michelin, CERL Ladoux @2 63040 Clermont Ferrand @3 FRA @Z 4 aut.
A14 06      @1 University of Wollongong @2 Wollongong @3 AUS @Z 7 aut.
A14 07      @1 LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson @2 94230 Cachan @3 FRA @Z 3 aut. @Z 5 aut.
A14 08      @1 Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road @2 Berkeley, California 94720 @3 USA @Z 6 aut.
A20       @1 1529-1543
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 13789 @5 354000509220620450
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 73 ref.
A47 01  1    @0 12-0204575
A60       @1 P
A61       @0 A
A64 01  1    @0 Macromolecules : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q0, where Q0 is the invariant before deformation, greatly increased above a critical extension ratio λonset which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λonset are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σonset (25 MPa) was observed when the filler volume fraction φCB was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density νC in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.
C02 01  X    @0 001D09D04B
C03 01  X  FRE  @0 Vulcanisat @5 01
C03 01  X  ENG  @0 Vulcanizate @5 01
C03 01  X  SPA  @0 Vulcanizado @5 01
C03 02  X  FRE  @0 SBR @5 02
C03 02  X  ENG  @0 SBR @5 02
C03 02  X  SPA  @0 SBR @5 02
C03 03  3  FRE  @0 Polymère chargé @5 03
C03 03  3  ENG  @0 Filled polymers @5 03
C03 04  X  FRE  @0 Noir carbone @1 SEC @5 04
C03 04  X  ENG  @0 Carbon black @1 SEC @5 04
C03 04  X  SPA  @0 Carbón negro @1 SEC @5 04
C03 05  X  FRE  @0 Effet concentration @5 05
C03 05  X  ENG  @0 Concentration effect @5 05
C03 05  X  SPA  @0 Efecto concentración @5 05
C03 06  X  FRE  @0 Allongement mécanique @5 07
C03 06  X  ENG  @0 Elongation (mechanics) @5 07
C03 06  X  SPA  @0 Alargamiento (mecánico) @5 07
C03 07  X  FRE  @0 Cavitation @5 09
C03 07  X  ENG  @0 Cavitation @5 09
C03 07  X  SPA  @0 Cavitación @5 09
C03 08  X  FRE  @0 Fraction vide @5 10
C03 08  X  ENG  @0 Void fraction @5 10
C03 08  X  SPA  @0 Fracción vacío @5 10
C03 09  X  FRE  @0 Méthode étude @5 13
C03 09  X  ENG  @0 Investigation method @5 13
C03 09  X  SPA  @0 Método estudio @5 13
C03 10  X  FRE  @0 Diffusion RX centrale @5 14
C03 10  X  ENG  @0 Small angle X ray scattering @5 14
C03 10  X  SPA  @0 Difusión rayo X central @5 14
C03 11  X  FRE  @0 Temps réel @5 15
C03 11  X  ENG  @0 Real time @5 15
C03 11  X  SPA  @0 Tiempo real @5 15
C03 12  X  FRE  @0 Etude expérimentale @5 17
C03 12  X  ENG  @0 Experimental study @5 17
C03 12  X  SPA  @0 Estudio experimental @5 17
C03 13  X  FRE  @0 Nanocavitation @4 INC @5 32
C03 14  X  FRE  @0 Modèle 3 phases @4 INC @5 33
C07 01  X  FRE  @0 Déformation uniaxiale @5 06
C07 01  X  ENG  @0 Uniaxial strain @5 06
C07 01  X  SPA  @0 Deformación uniaxial @5 06
N21       @1 156
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 12-0204575 INIST
ET : Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering
AU : HUAN ZHANG; SCHOLZ (Arthur K.); DE CREVOISIER (Jordan); VION-LOISEL (Fabien); BESNARD (Gilles); HEXEMER (Alexander); BROWN (Hugh R.); KRAMER (Edward J.); CRETIN (Costantino)
AF : Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin/75005 Paris/France (1 aut., 3 aut., 9 aut.); Materials Research Laboratory, University of California/Santa Barbara, California 93106/Etats-Unis (2 aut., 8 aut.); Department of Materials, University of California/Santa Barbara, California 93106/Etats-Unis (2 aut., 8 aut.); Department of Chemical Engineering, University of California/Santa Barbara, California 93106/Etats-Unis (8 aut.); Michelin, CERL Ladoux/63040 Clermont Ferrand/France (4 aut.); University of Wollongong/Wollongong/Australie (7 aut.); LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson/94230 Cachan/France (3 aut., 5 aut.); Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road/Berkeley, California 94720/Etats-Unis (6 aut.)
DT : Publication en série; Niveau analytique
SO : Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2012; Vol. 45; No. 3; Pp. 1529-1543; Bibl. 73 ref.
LA : Anglais
EA : Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q0, where Q0 is the invariant before deformation, greatly increased above a critical extension ratio λonset which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λonset are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σonset (25 MPa) was observed when the filler volume fraction φCB was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density νC in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.
CC : 001D09D04B
FD : Vulcanisat; SBR; Polymère chargé; Noir carbone; Effet concentration; Allongement mécanique; Cavitation; Fraction vide; Méthode étude; Diffusion RX centrale; Temps réel; Etude expérimentale; Nanocavitation; Modèle 3 phases
FG : Déformation uniaxiale
ED : Vulcanizate; SBR; Filled polymers; Carbon black; Concentration effect; Elongation (mechanics); Cavitation; Void fraction; Investigation method; Small angle X ray scattering; Real time; Experimental study
EG : Uniaxial strain
SD : Vulcanizado; SBR; Carbón negro; Efecto concentración; Alargamiento (mecánico); Cavitación; Fracción vacío; Método estudio; Difusión rayo X central; Tiempo real; Estudio experimental
LO : INIST-13789.354000509220620450
ID : 12-0204575

Links to Exploration step

Pascal:12-0204575

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering</title>
<author>
<name sortKey="Huan Zhang" sort="Huan Zhang" uniqKey="Huan Zhang" last="Huan Zhang">HUAN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scholz, Arthur K" sort="Scholz, Arthur K" uniqKey="Scholz A" first="Arthur K." last="Scholz">Arthur K. Scholz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Materials Research Laboratory, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Materials, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Crevoisier, Jordan" sort="De Crevoisier, Jordan" uniqKey="De Crevoisier J" first="Jordan" last="De Crevoisier">Jordan De Crevoisier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson</s1>
<s2>94230 Cachan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vion Loisel, Fabien" sort="Vion Loisel, Fabien" uniqKey="Vion Loisel F" first="Fabien" last="Vion-Loisel">Fabien Vion-Loisel</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Michelin, CERL Ladoux</s1>
<s2>63040 Clermont Ferrand</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Besnard, Gilles" sort="Besnard, Gilles" uniqKey="Besnard G" first="Gilles" last="Besnard">Gilles Besnard</name>
<affiliation>
<inist:fA14 i1="07">
<s1>LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson</s1>
<s2>94230 Cachan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hexemer, Alexander" sort="Hexemer, Alexander" uniqKey="Hexemer A" first="Alexander" last="Hexemer">Alexander Hexemer</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brown, Hugh R" sort="Brown, Hugh R" uniqKey="Brown H" first="Hugh R." last="Brown">Hugh R. Brown</name>
<affiliation>
<inist:fA14 i1="06">
<s1>University of Wollongong</s1>
<s2>Wollongong</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kramer, Edward J" sort="Kramer, Edward J" uniqKey="Kramer E" first="Edward J." last="Kramer">Edward J. Kramer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Materials Research Laboratory, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Materials, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemical Engineering, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cretin, Costantino" sort="Cretin, Costantino" uniqKey="Cretin C" first="Costantino" last="Cretin">Costantino Cretin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0204575</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0204575 INIST</idno>
<idno type="RBID">Pascal:12-0204575</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering</title>
<author>
<name sortKey="Huan Zhang" sort="Huan Zhang" uniqKey="Huan Zhang" last="Huan Zhang">HUAN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scholz, Arthur K" sort="Scholz, Arthur K" uniqKey="Scholz A" first="Arthur K." last="Scholz">Arthur K. Scholz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Materials Research Laboratory, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Materials, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Crevoisier, Jordan" sort="De Crevoisier, Jordan" uniqKey="De Crevoisier J" first="Jordan" last="De Crevoisier">Jordan De Crevoisier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson</s1>
<s2>94230 Cachan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vion Loisel, Fabien" sort="Vion Loisel, Fabien" uniqKey="Vion Loisel F" first="Fabien" last="Vion-Loisel">Fabien Vion-Loisel</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Michelin, CERL Ladoux</s1>
<s2>63040 Clermont Ferrand</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Besnard, Gilles" sort="Besnard, Gilles" uniqKey="Besnard G" first="Gilles" last="Besnard">Gilles Besnard</name>
<affiliation>
<inist:fA14 i1="07">
<s1>LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson</s1>
<s2>94230 Cachan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hexemer, Alexander" sort="Hexemer, Alexander" uniqKey="Hexemer A" first="Alexander" last="Hexemer">Alexander Hexemer</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brown, Hugh R" sort="Brown, Hugh R" uniqKey="Brown H" first="Hugh R." last="Brown">Hugh R. Brown</name>
<affiliation>
<inist:fA14 i1="06">
<s1>University of Wollongong</s1>
<s2>Wollongong</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kramer, Edward J" sort="Kramer, Edward J" uniqKey="Kramer E" first="Edward J." last="Kramer">Edward J. Kramer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Materials Research Laboratory, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Materials, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Chemical Engineering, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cretin, Costantino" sort="Cretin, Costantino" uniqKey="Cretin C" first="Costantino" last="Cretin">Costantino Cretin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon black</term>
<term>Cavitation</term>
<term>Concentration effect</term>
<term>Elongation (mechanics)</term>
<term>Experimental study</term>
<term>Filled polymers</term>
<term>Investigation method</term>
<term>Real time</term>
<term>SBR</term>
<term>Small angle X ray scattering</term>
<term>Void fraction</term>
<term>Vulcanizate</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vulcanisat</term>
<term>SBR</term>
<term>Polymère chargé</term>
<term>Noir carbone</term>
<term>Effet concentration</term>
<term>Allongement mécanique</term>
<term>Cavitation</term>
<term>Fraction vide</term>
<term>Méthode étude</term>
<term>Diffusion RX centrale</term>
<term>Temps réel</term>
<term>Etude expérimentale</term>
<term>Nanocavitation</term>
<term>Modèle 3 phases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q
<sub>0</sub>
, where Q
<sub>0</sub>
is the invariant before deformation, greatly increased above a critical extension ratio λ
<sub>onset</sub>
which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λ
<sub>onset</sub>
are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σ
<sub>onset</sub>
(25 MPa) was observed when the filler volume fraction φ
<sub>CB</sub>
was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density ν
<sub>C</sub>
in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0024-9297</s0>
</fA01>
<fA02 i1="01">
<s0>MAMOBX</s0>
</fA02>
<fA03 i2="1">
<s0>Macromolecules : (Print)</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUAN ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHOLZ (Arthur K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DE CREVOISIER (Jordan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VION-LOISEL (Fabien)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BESNARD (Gilles)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HEXEMER (Alexander)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BROWN (Hugh R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KRAMER (Edward J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>CRETIN (Costantino)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials Research Laboratory, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Materials, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Chemical Engineering, University of California</s1>
<s2>Santa Barbara, California 93106</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Michelin, CERL Ladoux</s1>
<s2>63040 Clermont Ferrand</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>University of Wollongong</s1>
<s2>Wollongong</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson</s1>
<s2>94230 Cachan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, California 94720</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1529-1543</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13789</s2>
<s5>354000509220620450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>73 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0204575</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Macromolecules : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q
<sub>0</sub>
, where Q
<sub>0</sub>
is the invariant before deformation, greatly increased above a critical extension ratio λ
<sub>onset</sub>
which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λ
<sub>onset</sub>
are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σ
<sub>onset</sub>
(25 MPa) was observed when the filler volume fraction φ
<sub>CB</sub>
was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density ν
<sub>C</sub>
in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D04B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vulcanisat</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Vulcanizate</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Vulcanizado</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>SBR</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>SBR</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>SBR</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Polymère chargé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Filled polymers</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Noir carbone</s0>
<s1>SEC</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Carbon black</s0>
<s1>SEC</s1>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Carbón negro</s0>
<s1>SEC</s1>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Allongement mécanique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Elongation (mechanics)</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Alargamiento (mecánico)</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cavitation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cavitation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Cavitación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fraction vide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Void fraction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fracción vacío</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode étude</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Investigation method</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método estudio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diffusion RX centrale</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Small angle X ray scattering</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Difusión rayo X central</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Real time</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanocavitation</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Modèle 3 phases</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Déformation uniaxiale</s0>
<s5>06</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Uniaxial strain</s0>
<s5>06</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Deformación uniaxial</s0>
<s5>06</s5>
</fC07>
<fN21>
<s1>156</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0204575 INIST</NO>
<ET>Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering</ET>
<AU>HUAN ZHANG; SCHOLZ (Arthur K.); DE CREVOISIER (Jordan); VION-LOISEL (Fabien); BESNARD (Gilles); HEXEMER (Alexander); BROWN (Hugh R.); KRAMER (Edward J.); CRETIN (Costantino)</AU>
<AF>Laboratory of Soft Matter Science and Engineering, ESPCI Paristech-CNRS-UPMC, 10 rue Vauquelin/75005 Paris/France (1 aut., 3 aut., 9 aut.); Materials Research Laboratory, University of California/Santa Barbara, California 93106/Etats-Unis (2 aut., 8 aut.); Department of Materials, University of California/Santa Barbara, California 93106/Etats-Unis (2 aut., 8 aut.); Department of Chemical Engineering, University of California/Santa Barbara, California 93106/Etats-Unis (8 aut.); Michelin, CERL Ladoux/63040 Clermont Ferrand/France (4 aut.); University of Wollongong/Wollongong/Australie (7 aut.); LMT-Cachan, ENS-Cachan, 61 avenue du président Wilson/94230 Cachan/France (3 aut., 5 aut.); Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road/Berkeley, California 94720/Etats-Unis (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Macromolecules : (Print); ISSN 0024-9297; Coden MAMOBX; Etats-Unis; Da. 2012; Vol. 45; No. 3; Pp. 1529-1543; Bibl. 73 ref.</SO>
<LA>Anglais</LA>
<EA>Nanocavitation was detected for the first time in carbon black filled styrene-butadiene rubber (CB-SBR) under uniaxial loading by real time small-angle X-ray scattering (SAXS) using synchrotron X-ray radiation. A three phase model was developed to calculate the void volume fraction from the scattering invariant Q determined from the observed SAXS patterns. The normalized scattering invariant Q/Q
<sub>0</sub>
, where Q
<sub>0</sub>
is the invariant before deformation, greatly increased above a critical extension ratio λ
<sub>onset</sub>
which we attribute to the formation of nanovoids. Analysis of the 2D scattering patterns show that voids formed are 20-40 nm in size and elongated along the tensile direction. Cavities formed beyond λ
<sub>onset</sub>
are smaller as λ increases. Results from the scattering experiments are strongly supported by macroscopic volume change measurements on the samples under similar uniaxial strain. A nearly constant nanocavitation stress σ
<sub>onset</sub>
(25 MPa) was observed when the filler volume fraction φ
<sub>CB</sub>
was larger than 14%. This value is much higher than that predicted based on the elastic instability of small voids in an unfilled elastomer and shows only a weak dependence on the cross-linking density ν
<sub>C</sub>
in heavily cross-linked samples. An energy based cavitation criterion stressing the importance of confined domains between particles or clusters of particles was adopted and found to be consistent with the observed results. The nanocavities are thought to alter the local stress state and promote local shear motion of filler particles.</EA>
<CC>001D09D04B</CC>
<FD>Vulcanisat; SBR; Polymère chargé; Noir carbone; Effet concentration; Allongement mécanique; Cavitation; Fraction vide; Méthode étude; Diffusion RX centrale; Temps réel; Etude expérimentale; Nanocavitation; Modèle 3 phases</FD>
<FG>Déformation uniaxiale</FG>
<ED>Vulcanizate; SBR; Filled polymers; Carbon black; Concentration effect; Elongation (mechanics); Cavitation; Void fraction; Investigation method; Small angle X ray scattering; Real time; Experimental study</ED>
<EG>Uniaxial strain</EG>
<SD>Vulcanizado; SBR; Carbón negro; Efecto concentración; Alargamiento (mecánico); Cavitación; Fracción vacío; Método estudio; Difusión rayo X central; Tiempo real; Estudio experimental</SD>
<LO>INIST-13789.354000509220620450</LO>
<ID>12-0204575</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0204575
   |texte=   Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024