Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band

Identifieur interne : 001300 ( PascalFrancis/Corpus ); précédent : 001299; suivant : 001301

Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band

Auteurs : Sandy Peischl ; Jeffrey P. Walker ; Dongryeol Ryu ; Yann H. Kerr ; Rocco Panciera ; Christoph Rüdiger

Source :

RBID : Pascal:12-0243945

Descripteurs français

English descriptors

Abstract

The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m3/m3. Further analysis found the following: 1) The roughness value HR was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tth and ttv required optimization, yielding new values of tth = 0.2 and ttv = 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0196-2892
A02 01      @0 IGRSD2
A03   1    @0 IEEE trans. geosci. remote sens.
A05       @2 50
A06       @2 5 @3 p. 1
A08 01  1  ENG  @1 Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band
A09 01  1  ENG  @1 Special Issue on ESA's Soil Moisture and Ocean Salinity Mission (SMOS)
A11 01  1    @1 PEISCHL (Sandy)
A11 02  1    @1 WALKER (Jeffrey P.)
A11 03  1    @1 RYU (Dongryeol)
A11 04  1    @1 KERR (Yann H.)
A11 05  1    @1 PANCIERA (Rocco)
A11 06  1    @1 RÜDIGER (Christoph)
A12 01  1    @1 KERR (Yann H.) @9 ed.
A12 02  1    @1 FONT (Jordi) @9 ed.
A12 03  1    @1 MARTIN-NEIRA (Manuel) @9 ed.
A12 04  1    @1 MECKLENBURG (Susanne) @9 ed.
A14 01      @1 Department of Civil Engineering, Faculty of Engineering, Monash University @2 Melbourne, Vic. 3800 @3 AUS @Z 1 aut. @Z 2 aut. @Z 6 aut.
A14 02      @1 Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne @2 Melbourne, Vic. 3010 @3 AUS @Z 3 aut.
A14 03      @1 Cooperative Research Centre for Spatial Information @2 Carlton, Vic. 3053 @3 AUS @Z 5 aut.
A14 04      @1 Centre d'Etudes Spatiales de la Biosphere @2 31401 Toulouse @3 FRA @Z 4 aut.
A15 01      @1 CESBIO (CNES/CNRS/UPS/IRD) @2 31401 Toulouse @3 FRA @Z 1 aut.
A15 02      @1 Institut de Ciències del Mar (ICM-CSIC) @2 08003 Barcelona @3 ESP @Z 2 aut.
A15 03      @1 ESA-ESTEC @2 2200 AG Noordwijk @3 NLD @Z 3 aut.
A15 04      @1 ESA-ESRIN @2 00044 Frascati @3 ITA @Z 4 aut.
A20       @1 1498-1506
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 222H5 @5 354000506948360120
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 12-0243945
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on geoscience and remote sensing
A66 01      @0 USA
C01 01    ENG  @0 The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m3/m3. Further analysis found the following: 1) The roughness value HR was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tth and ttv required optimization, yielding new values of tth = 0.2 and ttv = 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.
C02 01  2    @0 001E01M04
C02 02  2    @0 225B04
C03 01  2  FRE  @0 Rugosité @5 01
C03 01  2  ENG  @0 roughness @5 01
C03 01  2  SPA  @0 Rugosidad @5 01
C03 02  2  FRE  @0 Humidité sol @5 02
C03 02  2  ENG  @0 soil moisture @5 02
C03 02  2  SPA  @0 Humedad suelo @5 02
C03 03  2  FRE  @0 Salinité @5 03
C03 03  2  ENG  @0 salinity @5 03
C03 03  2  SPA  @0 Salinidad @5 03
C03 04  2  FRE  @0 Problème inverse @5 04
C03 04  2  ENG  @0 inverse problem @5 04
C03 04  2  SPA  @0 Problema inverso @5 04
C03 05  2  FRE  @0 Sol @2 NT @5 05
C03 05  2  ENG  @0 soils @2 NT @5 05
C03 05  2  SPA  @0 Suelo @2 NT @5 05
C03 06  2  FRE  @0 Hyperfréquence @5 06
C03 06  2  ENG  @0 microwaves @5 06
C03 07  2  FRE  @0 Végétation @5 07
C03 07  2  ENG  @0 vegetation @5 07
C03 07  2  SPA  @0 Vegetación @5 07
C03 08  2  FRE  @0 Profondeur @5 08
C03 08  2  ENG  @0 depth @5 08
C03 08  2  SPA  @0 Profundidad @5 08
C03 09  2  FRE  @0 Température brillance @5 09
C03 09  2  ENG  @0 brightness temperature @5 09
C03 10  2  FRE  @0 Angle incidence @5 10
C03 10  2  ENG  @0 incidence angle @5 10
C03 11  2  FRE  @0 Etude expérimentale @5 11
C03 11  2  ENG  @0 experimental studies @5 11
C03 12  2  FRE  @0 Brillance @5 12
C03 12  2  ENG  @0 brightness @5 12
C03 13  2  FRE  @0 Modèle @5 13
C03 13  2  ENG  @0 models @5 13
C03 13  2  SPA  @0 Modelo @5 13
C03 14  2  FRE  @0 Simulation @5 14
C03 14  2  ENG  @0 simulation @5 14
C03 14  2  SPA  @0 Simulación @5 14
C03 15  2  FRE  @0 Erreur @5 15
C03 15  2  ENG  @0 errors @5 15
C03 15  2  SPA  @0 Error @5 15
C03 16  2  FRE  @0 Optimisation @5 16
C03 16  2  ENG  @0 optimization @5 16
C03 16  2  SPA  @0 Optimización @5 16
C03 17  2  FRE  @0 Etalonnage @5 17
C03 17  2  ENG  @0 calibration @5 17
C03 17  2  SPA  @0 Contraste @5 17
C03 18  2  FRE  @0 Expérimentation @5 18
C03 18  2  ENG  @0 testing @5 18
C03 19  2  FRE  @0 Prévision @5 19
C03 19  2  ENG  @0 prediction @5 19
C03 19  2  SPA  @0 Previsión @5 19
C03 20  2  FRE  @0 Biosphère @5 20
C03 20  2  ENG  @0 biosphere @5 20
C03 20  2  SPA  @0 Biosfera @5 20
C03 21  2  FRE  @0 Radiométrie @5 21
C03 21  2  ENG  @0 radiometry @5 21
C03 22  2  FRE  @0 Australie @2 NG @5 61
C03 22  2  ENG  @0 Australia @2 NG @5 61
C03 22  2  SPA  @0 Australia @2 NG @5 61
C07 01  2  FRE  @0 Australasie
C07 01  2  ENG  @0 Australasia
C07 01  2  SPA  @0 Australasia
N21       @1 184
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0243945 INIST
ET : Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band
AU : PEISCHL (Sandy); WALKER (Jeffrey P.); RYU (Dongryeol); KERR (Yann H.); PANCIERA (Rocco); RÜDIGER (Christoph); KERR (Yann H.); FONT (Jordi); MARTIN-NEIRA (Manuel); MECKLENBURG (Susanne)
AF : Department of Civil Engineering, Faculty of Engineering, Monash University/Melbourne, Vic. 3800/Australie (1 aut., 2 aut., 6 aut.); Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne/Melbourne, Vic. 3010/Australie (3 aut.); Cooperative Research Centre for Spatial Information/Carlton, Vic. 3053/Australie (5 aut.); Centre d'Etudes Spatiales de la Biosphere/31401 Toulouse/France (4 aut.); CESBIO (CNES/CNRS/UPS/IRD)/31401 Toulouse/France (1 aut.); Institut de Ciències del Mar (ICM-CSIC)/08003 Barcelona/Espagne (2 aut.); ESA-ESTEC/2200 AG Noordwijk/Pays-Bas (3 aut.); ESA-ESRIN/00044 Frascati/Italie (4 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on geoscience and remote sensing; ISSN 0196-2892; Coden IGRSD2; Etats-Unis; Da. 2012; Vol. 50; No. 5 p. 1; Pp. 1498-1506; Bibl. 33 ref.
LA : Anglais
EA : The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m3/m3. Further analysis found the following: 1) The roughness value HR was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tth and ttv required optimization, yielding new values of tth = 0.2 and ttv = 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.
CC : 001E01M04; 225B04
FD : Rugosité; Humidité sol; Salinité; Problème inverse; Sol; Hyperfréquence; Végétation; Profondeur; Température brillance; Angle incidence; Etude expérimentale; Brillance; Modèle; Simulation; Erreur; Optimisation; Etalonnage; Expérimentation; Prévision; Biosphère; Radiométrie; Australie
FG : Australasie
ED : roughness; soil moisture; salinity; inverse problem; soils; microwaves; vegetation; depth; brightness temperature; incidence angle; experimental studies; brightness; models; simulation; errors; optimization; calibration; testing; prediction; biosphere; radiometry; Australia
EG : Australasia
SD : Rugosidad; Humedad suelo; Salinidad; Problema inverso; Suelo; Vegetación; Profundidad; Modelo; Simulación; Error; Optimización; Contraste; Previsión; Biosfera; Australia
LO : INIST-222H5.354000506948360120
ID : 12-0243945

Links to Exploration step

Pascal:12-0243945

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band</title>
<author>
<name sortKey="Peischl, Sandy" sort="Peischl, Sandy" uniqKey="Peischl S" first="Sandy" last="Peischl">Sandy Peischl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walker, Jeffrey P" sort="Walker, Jeffrey P" uniqKey="Walker J" first="Jeffrey P." last="Walker">Jeffrey P. Walker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Dongryeol" sort="Ryu, Dongryeol" uniqKey="Ryu D" first="Dongryeol" last="Ryu">Dongryeol Ryu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne</s1>
<s2>Melbourne, Vic. 3010</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerr, Yann H" sort="Kerr, Yann H" uniqKey="Kerr Y" first="Yann H." last="Kerr">Yann H. Kerr</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre d'Etudes Spatiales de la Biosphere</s1>
<s2>31401 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Panciera, Rocco" sort="Panciera, Rocco" uniqKey="Panciera R" first="Rocco" last="Panciera">Rocco Panciera</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Research Centre for Spatial Information</s1>
<s2>Carlton, Vic. 3053</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudiger, Christoph" sort="Rudiger, Christoph" uniqKey="Rudiger C" first="Christoph" last="Rüdiger">Christoph Rüdiger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0243945</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0243945 INIST</idno>
<idno type="RBID">Pascal:12-0243945</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001300</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band</title>
<author>
<name sortKey="Peischl, Sandy" sort="Peischl, Sandy" uniqKey="Peischl S" first="Sandy" last="Peischl">Sandy Peischl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walker, Jeffrey P" sort="Walker, Jeffrey P" uniqKey="Walker J" first="Jeffrey P." last="Walker">Jeffrey P. Walker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Dongryeol" sort="Ryu, Dongryeol" uniqKey="Ryu D" first="Dongryeol" last="Ryu">Dongryeol Ryu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne</s1>
<s2>Melbourne, Vic. 3010</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerr, Yann H" sort="Kerr, Yann H" uniqKey="Kerr Y" first="Yann H." last="Kerr">Yann H. Kerr</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre d'Etudes Spatiales de la Biosphere</s1>
<s2>31401 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Panciera, Rocco" sort="Panciera, Rocco" uniqKey="Panciera R" first="Rocco" last="Panciera">Rocco Panciera</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Research Centre for Spatial Information</s1>
<s2>Carlton, Vic. 3053</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudiger, Christoph" sort="Rudiger, Christoph" uniqKey="Rudiger C" first="Christoph" last="Rüdiger">Christoph Rüdiger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on geoscience and remote sensing</title>
<title level="j" type="abbreviated">IEEE trans. geosci. remote sens.</title>
<idno type="ISSN">0196-2892</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on geoscience and remote sensing</title>
<title level="j" type="abbreviated">IEEE trans. geosci. remote sens.</title>
<idno type="ISSN">0196-2892</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia</term>
<term>biosphere</term>
<term>brightness</term>
<term>brightness temperature</term>
<term>calibration</term>
<term>depth</term>
<term>errors</term>
<term>experimental studies</term>
<term>incidence angle</term>
<term>inverse problem</term>
<term>microwaves</term>
<term>models</term>
<term>optimization</term>
<term>prediction</term>
<term>radiometry</term>
<term>roughness</term>
<term>salinity</term>
<term>simulation</term>
<term>soil moisture</term>
<term>soils</term>
<term>testing</term>
<term>vegetation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rugosité</term>
<term>Humidité sol</term>
<term>Salinité</term>
<term>Problème inverse</term>
<term>Sol</term>
<term>Hyperfréquence</term>
<term>Végétation</term>
<term>Profondeur</term>
<term>Température brillance</term>
<term>Angle incidence</term>
<term>Etude expérimentale</term>
<term>Brillance</term>
<term>Modèle</term>
<term>Simulation</term>
<term>Erreur</term>
<term>Optimisation</term>
<term>Etalonnage</term>
<term>Expérimentation</term>
<term>Prévision</term>
<term>Biosphère</term>
<term>Radiométrie</term>
<term>Australie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m
<sup>3</sup>
/m
<sup>3</sup>
. Further analysis found the following: 1) The roughness value H
<sub>R</sub>
was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tt
<sub>h</sub>
and tt
<sub>v</sub>
required optimization, yielding new values of tt
<sub>h</sub>
= 0.2 and tt
<sub>v</sub>
= 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0196-2892</s0>
</fA01>
<fA02 i1="01">
<s0>IGRSD2</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. geosci. remote sens.</s0>
</fA03>
<fA05>
<s2>50</s2>
</fA05>
<fA06>
<s2>5</s2>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue on ESA's Soil Moisture and Ocean Salinity Mission (SMOS)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PEISCHL (Sandy)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WALKER (Jeffrey P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RYU (Dongryeol)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KERR (Yann H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PANCIERA (Rocco)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RÜDIGER (Christoph)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KERR (Yann H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>FONT (Jordi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MARTIN-NEIRA (Manuel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>MECKLENBURG (Susanne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Civil Engineering, Faculty of Engineering, Monash University</s1>
<s2>Melbourne, Vic. 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne</s1>
<s2>Melbourne, Vic. 3010</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Cooperative Research Centre for Spatial Information</s1>
<s2>Carlton, Vic. 3053</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Centre d'Etudes Spatiales de la Biosphere</s1>
<s2>31401 Toulouse</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CESBIO (CNES/CNRS/UPS/IRD)</s1>
<s2>31401 Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institut de Ciències del Mar (ICM-CSIC)</s1>
<s2>08003 Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>ESA-ESTEC</s1>
<s2>2200 AG Noordwijk</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>ESA-ESRIN</s1>
<s2>00044 Frascati</s2>
<s3>ITA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>1498-1506</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222H5</s2>
<s5>354000506948360120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0243945</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on geoscience and remote sensing</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m
<sup>3</sup>
/m
<sup>3</sup>
. Further analysis found the following: 1) The roughness value H
<sub>R</sub>
was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tt
<sub>h</sub>
and tt
<sub>v</sub>
required optimization, yielding new values of tt
<sub>h</sub>
= 0.2 and tt
<sub>v</sub>
= 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01M04</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>225B04</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Rugosité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>roughness</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Rugosidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Humidité sol</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>soil moisture</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Humedad suelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Salinité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>salinity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Salinidad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>soils</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Hyperfréquence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>microwaves</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Végétation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>vegetation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Vegetación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Profondeur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>depth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Profundidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Température brillance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>brightness temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Angle incidence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>incidence angle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Brillance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>brightness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>models</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>simulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Erreur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>errors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Error</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Optimisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>optimization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Optimización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Etalonnage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>calibration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Contraste</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Expérimentation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>testing</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>prediction</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Biosphère</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>biosphere</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Biosfera</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Radiométrie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>radiometry</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>184</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0243945 INIST</NO>
<ET>Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band</ET>
<AU>PEISCHL (Sandy); WALKER (Jeffrey P.); RYU (Dongryeol); KERR (Yann H.); PANCIERA (Rocco); RÜDIGER (Christoph); KERR (Yann H.); FONT (Jordi); MARTIN-NEIRA (Manuel); MECKLENBURG (Susanne)</AU>
<AF>Department of Civil Engineering, Faculty of Engineering, Monash University/Melbourne, Vic. 3800/Australie (1 aut., 2 aut., 6 aut.); Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne/Melbourne, Vic. 3010/Australie (3 aut.); Cooperative Research Centre for Spatial Information/Carlton, Vic. 3053/Australie (5 aut.); Centre d'Etudes Spatiales de la Biosphere/31401 Toulouse/France (4 aut.); CESBIO (CNES/CNRS/UPS/IRD)/31401 Toulouse/France (1 aut.); Institut de Ciències del Mar (ICM-CSIC)/08003 Barcelona/Espagne (2 aut.); ESA-ESTEC/2200 AG Noordwijk/Pays-Bas (3 aut.); ESA-ESRIN/00044 Frascati/Italie (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on geoscience and remote sensing; ISSN 0196-2892; Coden IGRSD2; Etats-Unis; Da. 2012; Vol. 50; No. 5 p. 1; Pp. 1498-1506; Bibl. 33 ref.</SO>
<LA>Anglais</LA>
<EA>The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m
<sup>3</sup>
/m
<sup>3</sup>
. Further analysis found the following: 1) The roughness value H
<sub>R</sub>
was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tt
<sub>h</sub>
and tt
<sub>v</sub>
required optimization, yielding new values of tt
<sub>h</sub>
= 0.2 and tt
<sub>v</sub>
= 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.</EA>
<CC>001E01M04; 225B04</CC>
<FD>Rugosité; Humidité sol; Salinité; Problème inverse; Sol; Hyperfréquence; Végétation; Profondeur; Température brillance; Angle incidence; Etude expérimentale; Brillance; Modèle; Simulation; Erreur; Optimisation; Etalonnage; Expérimentation; Prévision; Biosphère; Radiométrie; Australie</FD>
<FG>Australasie</FG>
<ED>roughness; soil moisture; salinity; inverse problem; soils; microwaves; vegetation; depth; brightness temperature; incidence angle; experimental studies; brightness; models; simulation; errors; optimization; calibration; testing; prediction; biosphere; radiometry; Australia</ED>
<EG>Australasia</EG>
<SD>Rugosidad; Humedad suelo; Salinidad; Problema inverso; Suelo; Vegetación; Profundidad; Modelo; Simulación; Error; Optimización; Contraste; Previsión; Biosfera; Australia</SD>
<LO>INIST-222H5.354000506948360120</LO>
<ID>12-0243945</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001300 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001300 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0243945
   |texte=   Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024