Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Three-dimensional interferometric, spectrometric, and planetary views of Procyon

Identifieur interne : 001216 ( PascalFrancis/Corpus ); précédent : 001215; suivant : 001217

Three-dimensional interferometric, spectrometric, and planetary views of Procyon

Auteurs : A. Chiavassa ; L. Bigot ; P. Kervella ; A. Matter ; B. Lopez ; R. Collet ; Z. Magic ; M. Asplund

Source :

RBID : Pascal:12-0314045

Descripteurs français

English descriptors

Abstract

Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θvinci = 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θseismic = 5.360 ± 0.07 mas. The resulting Terf is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of Teff,IR = 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s2] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0004-6361
A02 01      @0 AAEJAF
A03   1    @0 Astron. astrophys. : (Berl., Print)
A05       @2 540
A06       @3 p. 1
A08 01  1  ENG  @1 Three-dimensional interferometric, spectrometric, and planetary views of Procyon
A11 01  1    @1 CHIAVASSA (A.)
A11 02  1    @1 BIGOT (L.)
A11 03  1    @1 KERVELLA (P.)
A11 04  1    @1 MATTER (A.)
A11 05  1    @1 LOPEZ (B.)
A11 06  1    @1 COLLET (R.)
A11 07  1    @1 MAGIC (Z.)
A11 08  1    @1 ASPLUND (M.)
A14 01      @1 Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe @2 1050 Bruxelles @3 BEL @Z 1 aut.
A14 02      @1 Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229 @2 06304 Nice @3 FRA @Z 2 aut. @Z 5 aut.
A14 03      @1 LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen @2 92195 Meudon @3 FRA @Z 3 aut.
A14 04      @1 Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69 @2 53121 Bonn @3 DEU @Z 4 aut.
A14 05      @1 Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7 @2 1350 Copenhagen @3 DNK @Z 6 aut.
A14 06      @1 Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30 @2 2100 Copenhagen @3 DNK @Z 6 aut.
A14 07      @1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1 @2 85741 Garching @3 DEU @Z 7 aut.
A14 08      @1 Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd. @2 Weston Creek, ACT 2611 @3 AUS @Z 8 aut.
A20       @2 A5.1-A5.14
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14176 @5 354000506679800120
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0314045
A60       @1 P
A61       @0 A
A64 01  1    @0 Astronomy and astrophysics : (Berlin. Print)
A66 01      @0 FRA
C01 01    ENG  @0 Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θvinci = 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θseismic = 5.360 ± 0.07 mas. The resulting Terf is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of Teff,IR = 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s2] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.
C02 01  3    @0 001E03
C03 01  X  FRE  @0 Plus proche voisin @5 26
C03 01  X  ENG  @0 Nearest neighbour @5 26
C03 01  X  SPA  @0 Vecino más cercano @5 26
C03 02  3  FRE  @0 Modèle hydrodynamique @5 27
C03 02  3  ENG  @0 Hydrodynamic model @5 27
C03 03  X  FRE  @0 Modèle atmosphère @5 28
C03 03  X  ENG  @0 Atmosphere model @5 28
C03 03  X  SPA  @0 Modelo atmósfera @5 28
C03 04  3  FRE  @0 Transfert radiatif @5 29
C03 04  3  ENG  @0 Radiative transfer @5 29
C03 05  X  FRE  @0 Intensité @5 30
C03 05  X  ENG  @0 Intensity @5 30
C03 05  X  SPA  @0 Intensidad @5 30
C03 06  X  FRE  @0 Variation centre bord @5 31
C03 06  X  ENG  @0 Center to limb variation @5 31
C03 06  X  SPA  @0 Variación centro del borde @5 31
C03 07  3  FRE  @0 Visibilité @5 32
C03 07  3  ENG  @0 Visibility @5 32
C03 08  3  FRE  @0 Assombrissement vers bord @5 33
C03 08  3  ENG  @0 Limb darkening @5 33
C03 09  3  FRE  @0 Convection @5 34
C03 09  3  ENG  @0 Convection @5 34
C03 10  X  FRE  @0 Diamètre angulaire @5 35
C03 10  X  ENG  @0 Angular diameter @5 35
C03 10  X  SPA  @0 Diamétro angular @5 35
C03 11  X  FRE  @0 Modèle 3 dimensions @5 36
C03 11  X  ENG  @0 Three dimensional model @5 36
C03 11  X  SPA  @0 Modelo 3 dimensiones @5 36
C03 12  3  FRE  @0 Gravité surface @5 37
C03 12  3  ENG  @0 Surface gravity @5 37
C03 13  X  FRE  @0 Observation spectrophotométrique @5 38
C03 13  X  ENG  @0 Spectrophotometric observation @5 38
C03 13  X  SPA  @0 Observación espectrofotométrica @5 38
C03 14  X  FRE  @0 Densité spectrale énergie @5 39
C03 14  X  ENG  @0 Spectral energy distribution @5 39
C03 14  X  SPA  @0 Densidad espectral energía @5 39
C03 15  3  FRE  @0 Couleur @5 40
C03 15  3  ENG  @0 Color @5 40
C03 16  3  FRE  @0 Gradient température @5 41
C03 16  3  ENG  @0 Temperature gradients @5 41
C03 17  3  FRE  @0 Planète Jupiter @5 42
C03 17  3  ENG  @0 Jupiter planet @5 42
C03 18  X  FRE  @0 Interférométrie IR @5 43
C03 18  X  ENG  @0 Infrared interferometry @5 43
C03 18  X  SPA  @0 Interferometría IR @5 43
C03 19  X  FRE  @0 Système planétaire @5 44
C03 19  X  ENG  @0 Planetary system @5 44
C03 19  X  SPA  @0 Sistema planetario @5 44
N21       @1 240
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0314045 INIST
ET : Three-dimensional interferometric, spectrometric, and planetary views of Procyon
AU : CHIAVASSA (A.); BIGOT (L.); KERVELLA (P.); MATTER (A.); LOPEZ (B.); COLLET (R.); MAGIC (Z.); ASPLUND (M.)
AF : Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe/1050 Bruxelles/Belgique (1 aut.); Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229/06304 Nice/France (2 aut., 5 aut.); LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen/92195 Meudon/France (3 aut.); Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69/53121 Bonn/Allemagne (4 aut.); Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7/1350 Copenhagen/Danemark (6 aut.); Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30/2100 Copenhagen/Danemark (6 aut.); Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1/85741 Garching/Allemagne (7 aut.); Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd./Weston Creek, ACT 2611/Australie (8 aut.)
DT : Publication en série; Niveau analytique
SO : Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 540; No. p. 1; A5.1-A5.14; Bibl. 3/4 p.
LA : Anglais
EA : Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θvinci = 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θseismic = 5.360 ± 0.07 mas. The resulting Terf is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of Teff,IR = 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s2] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.
CC : 001E03
FD : Plus proche voisin; Modèle hydrodynamique; Modèle atmosphère; Transfert radiatif; Intensité; Variation centre bord; Visibilité; Assombrissement vers bord; Convection; Diamètre angulaire; Modèle 3 dimensions; Gravité surface; Observation spectrophotométrique; Densité spectrale énergie; Couleur; Gradient température; Planète Jupiter; Interférométrie IR; Système planétaire
ED : Nearest neighbour; Hydrodynamic model; Atmosphere model; Radiative transfer; Intensity; Center to limb variation; Visibility; Limb darkening; Convection; Angular diameter; Three dimensional model; Surface gravity; Spectrophotometric observation; Spectral energy distribution; Color; Temperature gradients; Jupiter planet; Infrared interferometry; Planetary system
SD : Vecino más cercano; Modelo atmósfera; Intensidad; Variación centro del borde; Diamétro angular; Modelo 3 dimensiones; Observación espectrofotométrica; Densidad espectral energía; Interferometría IR; Sistema planetario
LO : INIST-14176.354000506679800120
ID : 12-0314045

Links to Exploration step

Pascal:12-0314045

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Three-dimensional interferometric, spectrometric, and planetary views of Procyon</title>
<author>
<name sortKey="Chiavassa, A" sort="Chiavassa, A" uniqKey="Chiavassa A" first="A." last="Chiavassa">A. Chiavassa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bigot, L" sort="Bigot, L" uniqKey="Bigot L" first="L." last="Bigot">L. Bigot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229</s1>
<s2>06304 Nice</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kervella, P" sort="Kervella, P" uniqKey="Kervella P" first="P." last="Kervella">P. Kervella</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matter, A" sort="Matter, A" uniqKey="Matter A" first="A." last="Matter">A. Matter</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69</s1>
<s2>53121 Bonn</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lopez, B" sort="Lopez, B" uniqKey="Lopez B" first="B." last="Lopez">B. Lopez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229</s1>
<s2>06304 Nice</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Collet, R" sort="Collet, R" uniqKey="Collet R" first="R." last="Collet">R. Collet</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30</s1>
<s2>2100 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Magic, Z" sort="Magic, Z" uniqKey="Magic Z" first="Z." last="Magic">Z. Magic</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1</s1>
<s2>85741 Garching</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Asplund, M" sort="Asplund, M" uniqKey="Asplund M" first="M." last="Asplund">M. Asplund</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd.</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0314045</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0314045 INIST</idno>
<idno type="RBID">Pascal:12-0314045</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001216</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Three-dimensional interferometric, spectrometric, and planetary views of Procyon</title>
<author>
<name sortKey="Chiavassa, A" sort="Chiavassa, A" uniqKey="Chiavassa A" first="A." last="Chiavassa">A. Chiavassa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bigot, L" sort="Bigot, L" uniqKey="Bigot L" first="L." last="Bigot">L. Bigot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229</s1>
<s2>06304 Nice</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kervella, P" sort="Kervella, P" uniqKey="Kervella P" first="P." last="Kervella">P. Kervella</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matter, A" sort="Matter, A" uniqKey="Matter A" first="A." last="Matter">A. Matter</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69</s1>
<s2>53121 Bonn</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lopez, B" sort="Lopez, B" uniqKey="Lopez B" first="B." last="Lopez">B. Lopez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229</s1>
<s2>06304 Nice</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Collet, R" sort="Collet, R" uniqKey="Collet R" first="R." last="Collet">R. Collet</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30</s1>
<s2>2100 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Magic, Z" sort="Magic, Z" uniqKey="Magic Z" first="Z." last="Magic">Z. Magic</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1</s1>
<s2>85741 Garching</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Asplund, M" sort="Asplund, M" uniqKey="Asplund M" first="M." last="Asplund">M. Asplund</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd.</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular diameter</term>
<term>Atmosphere model</term>
<term>Center to limb variation</term>
<term>Color</term>
<term>Convection</term>
<term>Hydrodynamic model</term>
<term>Infrared interferometry</term>
<term>Intensity</term>
<term>Jupiter planet</term>
<term>Limb darkening</term>
<term>Nearest neighbour</term>
<term>Planetary system</term>
<term>Radiative transfer</term>
<term>Spectral energy distribution</term>
<term>Spectrophotometric observation</term>
<term>Surface gravity</term>
<term>Temperature gradients</term>
<term>Three dimensional model</term>
<term>Visibility</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plus proche voisin</term>
<term>Modèle hydrodynamique</term>
<term>Modèle atmosphère</term>
<term>Transfert radiatif</term>
<term>Intensité</term>
<term>Variation centre bord</term>
<term>Visibilité</term>
<term>Assombrissement vers bord</term>
<term>Convection</term>
<term>Diamètre angulaire</term>
<term>Modèle 3 dimensions</term>
<term>Gravité surface</term>
<term>Observation spectrophotométrique</term>
<term>Densité spectrale énergie</term>
<term>Couleur</term>
<term>Gradient température</term>
<term>Planète Jupiter</term>
<term>Interférométrie IR</term>
<term>Système planétaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θ
<sub>vinci</sub>
= 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θ
<sub>seismic</sub>
= 5.360 ± 0.07 mas. The resulting T
<sub>erf</sub>
is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of T
<sub>eff,IR</sub>
= 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s
<sup>2</sup>
] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0004-6361</s0>
</fA01>
<fA02 i1="01">
<s0>AAEJAF</s0>
</fA02>
<fA03 i2="1">
<s0>Astron. astrophys. : (Berl., Print)</s0>
</fA03>
<fA05>
<s2>540</s2>
</fA05>
<fA06>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Three-dimensional interferometric, spectrometric, and planetary views of Procyon</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHIAVASSA (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BIGOT (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KERVELLA (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MATTER (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LOPEZ (B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COLLET (R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MAGIC (Z.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ASPLUND (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229</s1>
<s2>06304 Nice</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69</s1>
<s2>53121 Bonn</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7</s1>
<s2>1350 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30</s1>
<s2>2100 Copenhagen</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1</s1>
<s2>85741 Garching</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd.</s1>
<s2>Weston Creek, ACT 2611</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>A5.1-A5.14</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14176</s2>
<s5>354000506679800120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0314045</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Astronomy and astrophysics : (Berlin. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θ
<sub>vinci</sub>
= 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θ
<sub>seismic</sub>
= 5.360 ± 0.07 mas. The resulting T
<sub>erf</sub>
is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of T
<sub>eff,IR</sub>
= 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s
<sup>2</sup>
] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Plus proche voisin</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nearest neighbour</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Vecino más cercano</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modèle hydrodynamique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Hydrodynamic model</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle atmosphère</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atmosphere model</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo atmósfera</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Transfert radiatif</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Radiative transfer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Intensité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Intensity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Intensidad</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Variation centre bord</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Center to limb variation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Variación centro del borde</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Visibilité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Visibility</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Assombrissement vers bord</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Limb darkening</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Convection</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Convection</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diamètre angulaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Angular diameter</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Diamétro angular</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gravité surface</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Surface gravity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Observation spectrophotométrique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Spectrophotometric observation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Observación espectrofotométrica</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Densité spectrale énergie</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spectral energy distribution</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Densidad espectral energía</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couleur</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Color</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gradient température</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Temperature gradients</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Planète Jupiter</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Jupiter planet</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Interférométrie IR</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Infrared interferometry</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Interferometría IR</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Système planétaire</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Planetary system</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Sistema planetario</s0>
<s5>44</s5>
</fC03>
<fN21>
<s1>240</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0314045 INIST</NO>
<ET>Three-dimensional interferometric, spectrometric, and planetary views of Procyon</ET>
<AU>CHIAVASSA (A.); BIGOT (L.); KERVELLA (P.); MATTER (A.); LOPEZ (B.); COLLET (R.); MAGIC (Z.); ASPLUND (M.)</AU>
<AF>Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP. 226, Boulevard du Triomphe/1050 Bruxelles/Belgique (1 aut.); Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, CNRS Laboratoire Lagrange, BP 4229/06304 Nice/France (2 aut., 5 aut.); LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen/92195 Meudon/France (3 aut.); Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69/53121 Bonn/Allemagne (4 aut.); Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7/1350 Copenhagen/Danemark (6 aut.); Astronomical Observatory/Niels Bohr Institute, Juliane Maries Vej 30/2100 Copenhagen/Danemark (6 aut.); Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1/85741 Garching/Allemagne (7 aut.); Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd./Weston Creek, ACT 2611/Australie (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 540; No. p. 1; A5.1-A5.14; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Context. Procyon is one of the brightest stars in the sky and one of our nearest neighbours. It is therefore an ideal benchmark object for stellar astrophysics studies using interferometric, spectroscopic, and asteroseismic techniques. Aims. We use a new realistic three-dimensional (3D) radiative-hydrodynamical (RHD) model atmosphere of Procyon generated with the STAGGER CODE and synthetic spectra computed with the radiative transfer code OPTIM3D to re-analyze interferometric and spectroscopic data from the optical to the infrared. We provide synthetic interferometric observables that can be validated using observations. Methods. We computed intensity maps from a RHD simulation in two optical filters centered on 500 and 800 nm (MARK III) and one infrared filter centered on 2.2 μm (VINCI). We constructed stellar disk images accounting for the center-to-limb variations and used them to derive visibility amplitudes and closure phases. We also computed the spatially and temporally averaged synthetic spectrum from the ultraviolet to the infrared. We compare these observables to Procyon data. Results. We study the impact of the granulation pattern on center-to-limb intensity profiles and provide limb-darkening coefficients in the optical as well as in the infrared. We show how the convection-related surface structures affect the visibility curves and closure phases with clear deviations from circular symmetry, from the 3rd lobe on. These deviations are detectable with current interferometers using closure phases. We derive new angular diameters at different wavelengths with two independent methods based on 3D simulations. We find that θ
<sub>vinci</sub>
= 5.390 ± 0.03 mas, which we confirm by comparison with an independent asteroseismic estimation (θ
<sub>seismic</sub>
= 5.360 ± 0.07 mas. The resulting T
<sub>erf</sub>
is 6591 K (or 6556 K depending on the bolometric flux used), which is consistent with the value of T
<sub>eff,IR</sub>
= 6621 K found with the infrared flux method. We measure a surface gravity log g = 4.01 ± 0.03 [cm/s
<sup>2</sup>
] that is higher by 0.05 dex than literature values. Spectrophotometric comparisons with observations provide very good agreement with the spectral energy distribution and photometric colors, allowing us to conclude that the thermal gradient in the simulation matches Procyon fairly well. Finally, we show that the granulation pattern of a planet-hosting Procyon-like star has a non-negligible impact on the detection of hot Jupiters in the infrared using interferometry closure phases. It is then crucial to have a comprehensive knowledge of the host star to directly detect and characterize hot Jupiters. In this respect, RHD simulations are very important to achieving this aim.</EA>
<CC>001E03</CC>
<FD>Plus proche voisin; Modèle hydrodynamique; Modèle atmosphère; Transfert radiatif; Intensité; Variation centre bord; Visibilité; Assombrissement vers bord; Convection; Diamètre angulaire; Modèle 3 dimensions; Gravité surface; Observation spectrophotométrique; Densité spectrale énergie; Couleur; Gradient température; Planète Jupiter; Interférométrie IR; Système planétaire</FD>
<ED>Nearest neighbour; Hydrodynamic model; Atmosphere model; Radiative transfer; Intensity; Center to limb variation; Visibility; Limb darkening; Convection; Angular diameter; Three dimensional model; Surface gravity; Spectrophotometric observation; Spectral energy distribution; Color; Temperature gradients; Jupiter planet; Infrared interferometry; Planetary system</ED>
<SD>Vecino más cercano; Modelo atmósfera; Intensidad; Variación centro del borde; Diamétro angular; Modelo 3 dimensiones; Observación espectrofotométrica; Densidad espectral energía; Interferometría IR; Sistema planetario</SD>
<LO>INIST-14176.354000506679800120</LO>
<ID>12-0314045</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0314045
   |texte=   Three-dimensional interferometric, spectrometric, and planetary views of Procyon
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024