Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metallicity gradients in disks Do galaxies form inside-out?

Identifieur interne : 001214 ( PascalFrancis/Corpus ); précédent : 001213; suivant : 001215

Metallicity gradients in disks Do galaxies form inside-out?

Auteurs : K. Pilkington ; C. G. Few ; B. K. Gibson ; F. Calura ; L. Michel-Dansac ; R. J. Thacker ; M. Molla ; F. Matteucci ; A. Rahimi ; D. Kawata ; C. Kobayashi ; C. B. Brook ; G. S. Stinson ; H. M. P. Couchman ; J. Bailin ; J. Wadsley

Source :

RBID : Pascal:12-0314099

Descripteurs français

English descriptors

Abstract

Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0004-6361
A02 01      @0 AAEJAF
A03   1    @0 Astron. astrophys. : (Berl., Print)
A05       @2 540
A06       @3 p. 1
A08 01  1  ENG  @1 Metallicity gradients in disks Do galaxies form inside-out?
A11 01  1    @1 PILKINGTON (K.)
A11 02  1    @1 FEW (C. G.)
A11 03  1    @1 GIBSON (B. K.)
A11 04  1    @1 CALURA (F.)
A11 05  1    @1 MICHEL-DANSAC (L.)
A11 06  1    @1 THACKER (R. J.)
A11 07  1    @1 MOLLA (M.)
A11 08  1    @1 MATTEUCCI (F.)
A11 09  1    @1 RAHIMI (A.)
A11 10  1    @1 KAWATA (D.)
A11 11  1    @1 KOBAYASHI (C.)
A11 12  1    @1 BROOK (C. B.)
A11 13  1    @1 STINSON (G. S.)
A11 14  1    @1 COUCHMAN (H. M. P.)
A11 15  1    @1 BAILIN (J.)
A11 16  1    @1 WADSLEY (J.)
A14 01      @1 Jeremiah Horrocks Insitute, University of Central Lancashire @2 Preston, PR1 2HE @3 GBR @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 7 aut. @Z 12 aut. @Z 13 aut.
A14 02      @1 Department of Astronomy & Physics, Saint Mary's University, Halifax @2 Nova Scotia, B3H 3C3 @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 03      @1 Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University @2 Clayton, 3800 Victoria @3 AUS @Z 1 aut. @Z 3 aut.
A14 04      @1 INAF, Osservatorio Astronomico di Bologna, via Ranzani 1 @2 40127 Bologna @3 ITA @Z 4 aut.
A14 05      @1 Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André @2 69230 Saint-Genis Laval @3 FRA @Z 5 aut.
A14 06      @1 Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22 @2 28040 Madrid @3 ESP @Z 7 aut.
A14 07      @1 Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11 @2 34131 Trieste @3 ITA @Z 8 aut.
A14 08      @1 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking @2 Surrey, RH5 6NT @3 GBR @Z 9 aut. @Z 10 aut.
A14 09      @1 Centre for Astrophysics Research, University of Hertfordshire @2 Hatfield, AL10 9AB @3 GBR @Z 11 aut.
A14 10      @1 Departamento de Física Teórica, Universidad Autónoma de Madrid @2 Cantoblanco, 28049 Madrid @3 ESP @Z 12 aut.
A14 11      @1 Max-Planck-Institut für Astronomie, Königstuhl 17 @2 69117 Heidelberg @3 DEU @Z 13 aut.
A14 12      @1 Department of Physics and Astronomy, McMaster University @2 Hamilton, Ontario, L8S 4M1 @3 CAN @Z 14 aut. @Z 16 aut.
A14 13      @1 Astronomy Department, University of Michigan, 500 Church St @2 Ann Arbor, MI, 48109-1042 @3 USA @Z 15 aut.
A20       @2 A56.1-A56.12
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14176 @5 354000506679800620
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0314099
A60       @1 P
A61       @0 A
A64 01  1    @0 Astronomy and astrophysics : (Berlin. Print)
A66 01      @0 FRA
C01 01    ENG  @0 Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
C02 01  3    @0 001E03
C03 01  X  FRE  @0 Métallicité @5 26
C03 01  X  ENG  @0 Metallicity @5 26
C03 01  X  SPA  @0 Metalicidad @5 26
C03 02  3  FRE  @0 Galaxies disques @5 27
C03 02  3  ENG  @0 Disk galaxies @5 27
C03 03  X  FRE  @0 Gradient vertical @5 28
C03 03  X  ENG  @0 Vertical gradient @5 28
C03 03  X  SPA  @0 Gradiente vertical @5 28
C03 04  3  FRE  @0 Modèle hydrodynamique @5 29
C03 04  3  ENG  @0 Hydrodynamic model @5 29
C03 05  3  FRE  @0 Simulation numérique @5 30
C03 05  3  ENG  @0 Digital simulation @5 30
C03 06  X  FRE  @0 Evolution chimique @5 31
C03 06  X  ENG  @0 Chemical evolution @5 31
C03 06  X  SPA  @0 Evolución química @5 31
C03 07  X  FRE  @0 Méthode SPH @5 32
C03 07  X  ENG  @0 Smoothed particle hydrodynamics method @5 32
C03 07  X  SPA  @0 Método SPH @5 32
C03 08  X  FRE  @0 Modèle chimique @5 33
C03 08  X  ENG  @0 Chemical model @5 33
C03 08  X  SPA  @0 Modelo químico @5 33
C03 09  X  FRE  @0 Gradient radial @5 34
C03 09  X  ENG  @0 Radial gradient @5 34
C03 09  X  SPA  @0 Gradiente radial @5 34
C03 10  3  FRE  @0 Déplacement vers le rouge @5 35
C03 10  3  ENG  @0 Red shift @5 35
C03 11  3  FRE  @0 Voie lactée @5 36
C03 11  3  ENG  @0 Milky Way @5 36
C03 12  3  FRE  @0 Abondance @5 37
C03 12  3  ENG  @0 Abundance @5 37
C03 13  X  FRE  @0 Autosimilitude @5 38
C03 13  X  ENG  @0 Selfsimilarity @5 38
C03 13  X  SPA  @0 Autosimilitud @5 38
C03 14  X  FRE  @0 Evolution galaxies @5 39
C03 14  X  ENG  @0 Galaxy evolution @5 39
C03 14  X  SPA  @0 Evolución galaxias @5 39
C03 15  3  FRE  @0 Formation galaxies @5 40
C03 15  3  ENG  @0 Galaxy formation @5 40
N21       @1 240
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0314099 INIST
ET : Metallicity gradients in disks Do galaxies form inside-out?
AU : PILKINGTON (K.); FEW (C. G.); GIBSON (B. K.); CALURA (F.); MICHEL-DANSAC (L.); THACKER (R. J.); MOLLA (M.); MATTEUCCI (F.); RAHIMI (A.); KAWATA (D.); KOBAYASHI (C.); BROOK (C. B.); STINSON (G. S.); COUCHMAN (H. M. P.); BAILIN (J.); WADSLEY (J.)
AF : Jeremiah Horrocks Insitute, University of Central Lancashire/Preston, PR1 2HE/Royaume-Uni (1 aut., 2 aut., 3 aut., 4 aut., 7 aut., 12 aut., 13 aut.); Department of Astronomy & Physics, Saint Mary's University, Halifax/Nova Scotia, B3H 3C3/Canada (1 aut., 2 aut., 3 aut., 6 aut.); Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University/Clayton, 3800 Victoria/Australie (1 aut., 3 aut.); INAF, Osservatorio Astronomico di Bologna, via Ranzani 1/40127 Bologna/Italie (4 aut.); Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André/69230 Saint-Genis Laval/France (5 aut.); Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22/28040 Madrid/Espagne (7 aut.); Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11/34131 Trieste/Italie (8 aut.); Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking/Surrey, RH5 6NT/Royaume-Uni (9 aut., 10 aut.); Centre for Astrophysics Research, University of Hertfordshire/Hatfield, AL10 9AB/Royaume-Uni (11 aut.); Departamento de Física Teórica, Universidad Autónoma de Madrid/Cantoblanco, 28049 Madrid/Espagne (12 aut.); Max-Planck-Institut für Astronomie, Königstuhl 17/69117 Heidelberg/Allemagne (13 aut.); Department of Physics and Astronomy, McMaster University/Hamilton, Ontario, L8S 4M1/Canada (14 aut., 16 aut.); Astronomy Department, University of Michigan, 500 Church St/Ann Arbor, MI, 48109-1042/Etats-Unis (15 aut.)
DT : Publication en série; Niveau analytique
SO : Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 540; No. p. 1; A56.1-A56.12; Bibl. 3/4 p.
LA : Anglais
EA : Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
CC : 001E03
FD : Métallicité; Galaxies disques; Gradient vertical; Modèle hydrodynamique; Simulation numérique; Evolution chimique; Méthode SPH; Modèle chimique; Gradient radial; Déplacement vers le rouge; Voie lactée; Abondance; Autosimilitude; Evolution galaxies; Formation galaxies
ED : Metallicity; Disk galaxies; Vertical gradient; Hydrodynamic model; Digital simulation; Chemical evolution; Smoothed particle hydrodynamics method; Chemical model; Radial gradient; Red shift; Milky Way; Abundance; Selfsimilarity; Galaxy evolution; Galaxy formation
SD : Metalicidad; Gradiente vertical; Evolución química; Método SPH; Modelo químico; Gradiente radial; Autosimilitud; Evolución galaxias
LO : INIST-14176.354000506679800620
ID : 12-0314099

Links to Exploration step

Pascal:12-0314099

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Metallicity gradients in disks Do galaxies form inside-out?</title>
<author>
<name sortKey="Pilkington, K" sort="Pilkington, K" uniqKey="Pilkington K" first="K." last="Pilkington">K. Pilkington</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University</s1>
<s2>Clayton, 3800 Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Few, C G" sort="Few, C G" uniqKey="Few C" first="C. G." last="Few">C. G. Few</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gibson, B K" sort="Gibson, B K" uniqKey="Gibson B" first="B. K." last="Gibson">B. K. Gibson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University</s1>
<s2>Clayton, 3800 Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Calura, F" sort="Calura, F" uniqKey="Calura F" first="F." last="Calura">F. Calura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>INAF, Osservatorio Astronomico di Bologna, via Ranzani 1</s1>
<s2>40127 Bologna</s2>
<s3>ITA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michel Dansac, L" sort="Michel Dansac, L" uniqKey="Michel Dansac L" first="L." last="Michel-Dansac">L. Michel-Dansac</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André</s1>
<s2>69230 Saint-Genis Laval</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thacker, R J" sort="Thacker, R J" uniqKey="Thacker R" first="R. J." last="Thacker">R. J. Thacker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Molla, M" sort="Molla, M" uniqKey="Molla M" first="M." last="Molla">M. Molla</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matteucci, F" sort="Matteucci, F" uniqKey="Matteucci F" first="F." last="Matteucci">F. Matteucci</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11</s1>
<s2>34131 Trieste</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahimi, A" sort="Rahimi, A" uniqKey="Rahimi A" first="A." last="Rahimi">A. Rahimi</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking</s1>
<s2>Surrey, RH5 6NT</s2>
<s3>GBR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kawata, D" sort="Kawata, D" uniqKey="Kawata D" first="D." last="Kawata">D. Kawata</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking</s1>
<s2>Surrey, RH5 6NT</s2>
<s3>GBR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, C" sort="Kobayashi, C" uniqKey="Kobayashi C" first="C." last="Kobayashi">C. Kobayashi</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Centre for Astrophysics Research, University of Hertfordshire</s1>
<s2>Hatfield, AL10 9AB</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brook, C B" sort="Brook, C B" uniqKey="Brook C" first="C. B." last="Brook">C. B. Brook</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="10">
<s1>Departamento de Física Teórica, Universidad Autónoma de Madrid</s1>
<s2>Cantoblanco, 28049 Madrid</s2>
<s3>ESP</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stinson, G S" sort="Stinson, G S" uniqKey="Stinson G" first="G. S." last="Stinson">G. S. Stinson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="11">
<s1>Max-Planck-Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Couchman, H M P" sort="Couchman, H M P" uniqKey="Couchman H" first="H. M. P." last="Couchman">H. M. P. Couchman</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Department of Physics and Astronomy, McMaster University</s1>
<s2>Hamilton, Ontario, L8S 4M1</s2>
<s3>CAN</s3>
<sZ>14 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bailin, J" sort="Bailin, J" uniqKey="Bailin J" first="J." last="Bailin">J. Bailin</name>
<affiliation>
<inist:fA14 i1="13">
<s1>Astronomy Department, University of Michigan, 500 Church St</s1>
<s2>Ann Arbor, MI, 48109-1042</s2>
<s3>USA</s3>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wadsley, J" sort="Wadsley, J" uniqKey="Wadsley J" first="J." last="Wadsley">J. Wadsley</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Department of Physics and Astronomy, McMaster University</s1>
<s2>Hamilton, Ontario, L8S 4M1</s2>
<s3>CAN</s3>
<sZ>14 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0314099</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0314099 INIST</idno>
<idno type="RBID">Pascal:12-0314099</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001214</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Metallicity gradients in disks Do galaxies form inside-out?</title>
<author>
<name sortKey="Pilkington, K" sort="Pilkington, K" uniqKey="Pilkington K" first="K." last="Pilkington">K. Pilkington</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University</s1>
<s2>Clayton, 3800 Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Few, C G" sort="Few, C G" uniqKey="Few C" first="C. G." last="Few">C. G. Few</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gibson, B K" sort="Gibson, B K" uniqKey="Gibson B" first="B. K." last="Gibson">B. K. Gibson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University</s1>
<s2>Clayton, 3800 Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Calura, F" sort="Calura, F" uniqKey="Calura F" first="F." last="Calura">F. Calura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>INAF, Osservatorio Astronomico di Bologna, via Ranzani 1</s1>
<s2>40127 Bologna</s2>
<s3>ITA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michel Dansac, L" sort="Michel Dansac, L" uniqKey="Michel Dansac L" first="L." last="Michel-Dansac">L. Michel-Dansac</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André</s1>
<s2>69230 Saint-Genis Laval</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thacker, R J" sort="Thacker, R J" uniqKey="Thacker R" first="R. J." last="Thacker">R. J. Thacker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Molla, M" sort="Molla, M" uniqKey="Molla M" first="M." last="Molla">M. Molla</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matteucci, F" sort="Matteucci, F" uniqKey="Matteucci F" first="F." last="Matteucci">F. Matteucci</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11</s1>
<s2>34131 Trieste</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahimi, A" sort="Rahimi, A" uniqKey="Rahimi A" first="A." last="Rahimi">A. Rahimi</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking</s1>
<s2>Surrey, RH5 6NT</s2>
<s3>GBR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kawata, D" sort="Kawata, D" uniqKey="Kawata D" first="D." last="Kawata">D. Kawata</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking</s1>
<s2>Surrey, RH5 6NT</s2>
<s3>GBR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, C" sort="Kobayashi, C" uniqKey="Kobayashi C" first="C." last="Kobayashi">C. Kobayashi</name>
<affiliation>
<inist:fA14 i1="09">
<s1>Centre for Astrophysics Research, University of Hertfordshire</s1>
<s2>Hatfield, AL10 9AB</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brook, C B" sort="Brook, C B" uniqKey="Brook C" first="C. B." last="Brook">C. B. Brook</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="10">
<s1>Departamento de Física Teórica, Universidad Autónoma de Madrid</s1>
<s2>Cantoblanco, 28049 Madrid</s2>
<s3>ESP</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stinson, G S" sort="Stinson, G S" uniqKey="Stinson G" first="G. S." last="Stinson">G. S. Stinson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="11">
<s1>Max-Planck-Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Couchman, H M P" sort="Couchman, H M P" uniqKey="Couchman H" first="H. M. P." last="Couchman">H. M. P. Couchman</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Department of Physics and Astronomy, McMaster University</s1>
<s2>Hamilton, Ontario, L8S 4M1</s2>
<s3>CAN</s3>
<sZ>14 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bailin, J" sort="Bailin, J" uniqKey="Bailin J" first="J." last="Bailin">J. Bailin</name>
<affiliation>
<inist:fA14 i1="13">
<s1>Astronomy Department, University of Michigan, 500 Church St</s1>
<s2>Ann Arbor, MI, 48109-1042</s2>
<s3>USA</s3>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wadsley, J" sort="Wadsley, J" uniqKey="Wadsley J" first="J." last="Wadsley">J. Wadsley</name>
<affiliation>
<inist:fA14 i1="12">
<s1>Department of Physics and Astronomy, McMaster University</s1>
<s2>Hamilton, Ontario, L8S 4M1</s2>
<s3>CAN</s3>
<sZ>14 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abundance</term>
<term>Chemical evolution</term>
<term>Chemical model</term>
<term>Digital simulation</term>
<term>Disk galaxies</term>
<term>Galaxy evolution</term>
<term>Galaxy formation</term>
<term>Hydrodynamic model</term>
<term>Metallicity</term>
<term>Milky Way</term>
<term>Radial gradient</term>
<term>Red shift</term>
<term>Selfsimilarity</term>
<term>Smoothed particle hydrodynamics method</term>
<term>Vertical gradient</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Métallicité</term>
<term>Galaxies disques</term>
<term>Gradient vertical</term>
<term>Modèle hydrodynamique</term>
<term>Simulation numérique</term>
<term>Evolution chimique</term>
<term>Méthode SPH</term>
<term>Modèle chimique</term>
<term>Gradient radial</term>
<term>Déplacement vers le rouge</term>
<term>Voie lactée</term>
<term>Abondance</term>
<term>Autosimilitude</term>
<term>Evolution galaxies</term>
<term>Formation galaxies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code R
<sub>A</sub>
MSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0004-6361</s0>
</fA01>
<fA02 i1="01">
<s0>AAEJAF</s0>
</fA02>
<fA03 i2="1">
<s0>Astron. astrophys. : (Berl., Print)</s0>
</fA03>
<fA05>
<s2>540</s2>
</fA05>
<fA06>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Metallicity gradients in disks Do galaxies form inside-out?</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PILKINGTON (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FEW (C. G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GIBSON (B. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CALURA (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MICHEL-DANSAC (L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>THACKER (R. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MOLLA (M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MATTEUCCI (F.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>RAHIMI (A.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KAWATA (D.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>KOBAYASHI (C.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>BROOK (C. B.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>STINSON (G. S.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>COUCHMAN (H. M. P.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>BAILIN (J.)</s1>
</fA11>
<fA11 i1="16" i2="1">
<s1>WADSLEY (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Jeremiah Horrocks Insitute, University of Central Lancashire</s1>
<s2>Preston, PR1 2HE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Astronomy & Physics, Saint Mary's University, Halifax</s1>
<s2>Nova Scotia, B3H 3C3</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University</s1>
<s2>Clayton, 3800 Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>INAF, Osservatorio Astronomico di Bologna, via Ranzani 1</s1>
<s2>40127 Bologna</s2>
<s3>ITA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André</s1>
<s2>69230 Saint-Genis Laval</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11</s1>
<s2>34131 Trieste</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking</s1>
<s2>Surrey, RH5 6NT</s2>
<s3>GBR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>Centre for Astrophysics Research, University of Hertfordshire</s1>
<s2>Hatfield, AL10 9AB</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>Departamento de Física Teórica, Universidad Autónoma de Madrid</s1>
<s2>Cantoblanco, 28049 Madrid</s2>
<s3>ESP</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="11">
<s1>Max-Planck-Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="12">
<s1>Department of Physics and Astronomy, McMaster University</s1>
<s2>Hamilton, Ontario, L8S 4M1</s2>
<s3>CAN</s3>
<sZ>14 aut.</sZ>
<sZ>16 aut.</sZ>
</fA14>
<fA14 i1="13">
<s1>Astronomy Department, University of Michigan, 500 Church St</s1>
<s2>Ann Arbor, MI, 48109-1042</s2>
<s3>USA</s3>
<sZ>15 aut.</sZ>
</fA14>
<fA20>
<s2>A56.1-A56.12</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14176</s2>
<s5>354000506679800620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0314099</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Astronomy and astrophysics : (Berlin. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code R
<sub>A</sub>
MSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Métallicité</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Metallicity</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Metalicidad</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Galaxies disques</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Disk galaxies</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Gradient vertical</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vertical gradient</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Gradiente vertical</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle hydrodynamique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hydrodynamic model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Evolution chimique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chemical evolution</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Evolución química</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode SPH</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Smoothed particle hydrodynamics method</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método SPH</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Gradient radial</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Radial gradient</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Gradiente radial</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Red shift</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Voie lactée</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Milky Way</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Abondance</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Abundance</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Autosimilitude</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Selfsimilarity</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Autosimilitud</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Evolution galaxies</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Galaxy evolution</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Evolución galaxias</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Formation galaxies</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Galaxy formation</s0>
<s5>40</s5>
</fC03>
<fN21>
<s1>240</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0314099 INIST</NO>
<ET>Metallicity gradients in disks Do galaxies form inside-out?</ET>
<AU>PILKINGTON (K.); FEW (C. G.); GIBSON (B. K.); CALURA (F.); MICHEL-DANSAC (L.); THACKER (R. J.); MOLLA (M.); MATTEUCCI (F.); RAHIMI (A.); KAWATA (D.); KOBAYASHI (C.); BROOK (C. B.); STINSON (G. S.); COUCHMAN (H. M. P.); BAILIN (J.); WADSLEY (J.)</AU>
<AF>Jeremiah Horrocks Insitute, University of Central Lancashire/Preston, PR1 2HE/Royaume-Uni (1 aut., 2 aut., 3 aut., 4 aut., 7 aut., 12 aut., 13 aut.); Department of Astronomy & Physics, Saint Mary's University, Halifax/Nova Scotia, B3H 3C3/Canada (1 aut., 2 aut., 3 aut., 6 aut.); Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University/Clayton, 3800 Victoria/Australie (1 aut., 3 aut.); INAF, Osservatorio Astronomico di Bologna, via Ranzani 1/40127 Bologna/Italie (4 aut.); Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, Observatoire de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5574, 9 avenue Charles André/69230 Saint-Genis Laval/France (5 aut.); Departamento de Investigación Basica, CIEMAT, Avda. Complutense 22/28040 Madrid/Espagne (7 aut.); Departimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11/34131 Trieste/Italie (8 aut.); Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking/Surrey, RH5 6NT/Royaume-Uni (9 aut., 10 aut.); Centre for Astrophysics Research, University of Hertfordshire/Hatfield, AL10 9AB/Royaume-Uni (11 aut.); Departamento de Física Teórica, Universidad Autónoma de Madrid/Cantoblanco, 28049 Madrid/Espagne (12 aut.); Max-Planck-Institut für Astronomie, Königstuhl 17/69117 Heidelberg/Allemagne (13 aut.); Department of Physics and Astronomy, McMaster University/Hamilton, Ontario, L8S 4M1/Canada (14 aut., 16 aut.); Astronomy Department, University of Michigan, 500 Church St/Ann Arbor, MI, 48109-1042/Etats-Unis (15 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 540; No. p. 1; A56.1-A56.12; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Aims. We examine radial and vertical metallicity gradients using a suite of disk galaxy hydrodynamical simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient slope and reconcile the differences existing between extant models and observations within the canonical "inside-out" disk growth paradigm. Methods. A suite of 25 cosmological disks is used to examine the evolution of metallicity gradients; this consists of 19 galaxies selected from the RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code R
<sub>A</sub>
MSES, including eight drawn from the "field" and six from "loose group" environments. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE. Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. Results. We first show that generically flatter gradients are observed at redshift zero when comparing older stars with those forming today, consistent with expectations of kinematically hot simulations, but counter to that observed in the Milky Way. The vertical abundance gradients apt ∼1-3 disk scalelengths are comparable to those observed in the thick disk of the Milky Way, but significantly shallower than those seen in the thin disk. Most importantly, we find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. Conclusions. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical "inside-out" growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z ∼ 1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.</EA>
<CC>001E03</CC>
<FD>Métallicité; Galaxies disques; Gradient vertical; Modèle hydrodynamique; Simulation numérique; Evolution chimique; Méthode SPH; Modèle chimique; Gradient radial; Déplacement vers le rouge; Voie lactée; Abondance; Autosimilitude; Evolution galaxies; Formation galaxies</FD>
<ED>Metallicity; Disk galaxies; Vertical gradient; Hydrodynamic model; Digital simulation; Chemical evolution; Smoothed particle hydrodynamics method; Chemical model; Radial gradient; Red shift; Milky Way; Abundance; Selfsimilarity; Galaxy evolution; Galaxy formation</ED>
<SD>Metalicidad; Gradiente vertical; Evolución química; Método SPH; Modelo químico; Gradiente radial; Autosimilitud; Evolución galaxias</SD>
<LO>INIST-14176.354000506679800620</LO>
<ID>12-0314099</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001214 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001214 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0314099
   |texte=   Metallicity gradients in disks Do galaxies form inside-out?
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024