Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach

Identifieur interne : 001002 ( PascalFrancis/Corpus ); précédent : 001001; suivant : 001003

Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach

Auteurs : Marianne Chapouly ; Mazyar Mirrahimi

Source :

RBID : Pascal:12-0375638

Descripteurs français

English descriptors

Abstract

In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0018-9286
A02 01      @0 IETAA9
A03   1    @0 IEEE trans. automat. contr.
A05       @2 57
A06       @2 8
A08 01  1  ENG  @1 Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach
A09 01  1  ENG  @1 Control of Quantum Mechanical Systems
A11 01  1    @1 CHAPOULY (Marianne)
A11 02  1    @1 MIRRAHIMI (Mazyar)
A12 01  1    @1 ALTAFINI (Claudio) @9 ed.
A12 02  1    @1 BLOCH (Anthony M.) @9 ed.
A12 03  1    @1 JAMES (Matthew R.) @9 ed.
A12 04  1    @1 LORIA (Antonio) @9 ed.
A12 05  1    @1 ROUCHON (Pierre) @9 ed.
A14 01      @1 INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105 @2 78153 Le Chesnay @3 FRA @Z 1 aut. @Z 2 aut.
A15 01      @1 SISSA @2 Trieste @3 ITA @Z 1 aut.
A15 02      @1 Univ. of Michigan @2 Ann Arbor, MI @3 USA @Z 2 aut.
A15 03      @1 Austalian National University @2 Canberra @3 AUS @Z 3 aut.
A15 04      @1 CNRS @2 Gif-sur-Yvette @3 FRA @Z 4 aut.
A15 05      @1 MinesParisTech @2 Paris @3 FRA @Z 5 aut.
A20       @1 2067-2073
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 222E4 @5 354000504408830160
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 12-0375638
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on automatic control
A66 01      @0 USA
C01 01    ENG  @0 In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.
C02 01  X    @0 001D02D05
C03 01  X  FRE  @0 Identification système @5 06
C03 01  X  ENG  @0 System identification @5 06
C03 01  X  SPA  @0 Identificación sistema @5 06
C03 02  X  FRE  @0 Observateur @5 07
C03 02  X  ENG  @0 Observer @5 07
C03 02  X  SPA  @0 Observador @5 07
C03 03  X  FRE  @0 Temps minimal @5 08
C03 03  X  ENG  @0 Minimum time @5 08
C03 03  X  SPA  @0 Tiempo mínimo @5 08
C03 04  X  FRE  @0 Milieu confiné @5 15
C03 04  X  ENG  @0 Confined space @5 15
C03 04  X  SPA  @0 Medio confinado @5 15
C03 05  X  FRE  @0 Modélisation @5 23
C03 05  X  ENG  @0 Modeling @5 23
C03 05  X  SPA  @0 Modelización @5 23
C03 06  X  FRE  @0 Condition initiale @5 24
C03 06  X  ENG  @0 Initial condition @5 24
C03 06  X  SPA  @0 Condición inicial @5 24
C03 07  X  FRE  @0 Méthode Lyapunov @5 25
C03 07  X  ENG  @0 Lyapunov method @5 25
C03 07  X  SPA  @0 Método Lyapunov @5 25
C03 08  X  FRE  @0 Equation onde @5 28
C03 08  X  ENG  @0 Wave equation @5 28
C03 08  X  SPA  @0 Ecuación onda @5 28
C03 09  X  FRE  @0 Problème Neumann @5 29
C03 09  X  ENG  @0 Neumann problem @5 29
C03 09  X  SPA  @0 Problema Neumann @5 29
C03 10  X  FRE  @0 Méthode itérative @5 30
C03 10  X  ENG  @0 Iterative method @5 30
C03 10  X  SPA  @0 Método iterativo @5 30
C03 11  X  FRE  @0 Approximation asymptotique @5 31
C03 11  X  ENG  @0 Asymptotic approximation @5 31
C03 11  X  SPA  @0 Aproximación asintótica @5 31
C03 12  X  FRE  @0 Problème inverse @5 32
C03 12  X  ENG  @0 Inverse problem @5 32
C03 12  X  SPA  @0 Problema inverso @5 32
C03 13  X  FRE  @0 . @4 INC @5 82
C03 14  X  FRE  @0 Terme source @4 CD @5 96
C03 14  X  ENG  @0 Source terms @4 CD @5 96
C03 14  X  SPA  @0 Término fuente @4 CD @5 96
N21       @1 289
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0375638 INIST
ET : Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach
AU : CHAPOULY (Marianne); MIRRAHIMI (Mazyar); ALTAFINI (Claudio); BLOCH (Anthony M.); JAMES (Matthew R.); LORIA (Antonio); ROUCHON (Pierre)
AF : INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105/78153 Le Chesnay/France (1 aut., 2 aut.); SISSA/Trieste/Italie (1 aut.); Univ. of Michigan/Ann Arbor, MI/Etats-Unis (2 aut.); Austalian National University/Canberra/Australie (3 aut.); CNRS/Gif-sur-Yvette/France (4 aut.); MinesParisTech/Paris/France (5 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on automatic control; ISSN 0018-9286; Coden IETAA9; Etats-Unis; Da. 2012; Vol. 57; No. 8; Pp. 2067-2073; Bibl. 16 ref.
LA : Anglais
EA : In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.
CC : 001D02D05
FD : Identification système; Observateur; Temps minimal; Milieu confiné; Modélisation; Condition initiale; Méthode Lyapunov; Equation onde; Problème Neumann; Méthode itérative; Approximation asymptotique; Problème inverse; .; Terme source
ED : System identification; Observer; Minimum time; Confined space; Modeling; Initial condition; Lyapunov method; Wave equation; Neumann problem; Iterative method; Asymptotic approximation; Inverse problem; Source terms
SD : Identificación sistema; Observador; Tiempo mínimo; Medio confinado; Modelización; Condición inicial; Método Lyapunov; Ecuación onda; Problema Neumann; Método iterativo; Aproximación asintótica; Problema inverso; Término fuente
LO : INIST-222E4.354000504408830160
ID : 12-0375638

Links to Exploration step

Pascal:12-0375638

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach</title>
<author>
<name sortKey="Chapouly, Marianne" sort="Chapouly, Marianne" uniqKey="Chapouly M" first="Marianne" last="Chapouly">Marianne Chapouly</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105</s1>
<s2>78153 Le Chesnay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mirrahimi, Mazyar" sort="Mirrahimi, Mazyar" uniqKey="Mirrahimi M" first="Mazyar" last="Mirrahimi">Mazyar Mirrahimi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105</s1>
<s2>78153 Le Chesnay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0375638</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0375638 INIST</idno>
<idno type="RBID">Pascal:12-0375638</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach</title>
<author>
<name sortKey="Chapouly, Marianne" sort="Chapouly, Marianne" uniqKey="Chapouly M" first="Marianne" last="Chapouly">Marianne Chapouly</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105</s1>
<s2>78153 Le Chesnay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mirrahimi, Mazyar" sort="Mirrahimi, Mazyar" uniqKey="Mirrahimi M" first="Mazyar" last="Mirrahimi">Mazyar Mirrahimi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105</s1>
<s2>78153 Le Chesnay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on automatic control</title>
<title level="j" type="abbreviated">IEEE trans. automat. contr.</title>
<idno type="ISSN">0018-9286</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on automatic control</title>
<title level="j" type="abbreviated">IEEE trans. automat. contr.</title>
<idno type="ISSN">0018-9286</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asymptotic approximation</term>
<term>Confined space</term>
<term>Initial condition</term>
<term>Inverse problem</term>
<term>Iterative method</term>
<term>Lyapunov method</term>
<term>Minimum time</term>
<term>Modeling</term>
<term>Neumann problem</term>
<term>Observer</term>
<term>Source terms</term>
<term>System identification</term>
<term>Wave equation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Identification système</term>
<term>Observateur</term>
<term>Temps minimal</term>
<term>Milieu confiné</term>
<term>Modélisation</term>
<term>Condition initiale</term>
<term>Méthode Lyapunov</term>
<term>Equation onde</term>
<term>Problème Neumann</term>
<term>Méthode itérative</term>
<term>Approximation asymptotique</term>
<term>Problème inverse</term>
<term>.</term>
<term>Terme source</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9286</s0>
</fA01>
<fA02 i1="01">
<s0>IETAA9</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. automat. contr.</s0>
</fA03>
<fA05>
<s2>57</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Control of Quantum Mechanical Systems</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHAPOULY (Marianne)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIRRAHIMI (Mazyar)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ALTAFINI (Claudio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BLOCH (Anthony M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>JAMES (Matthew R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>LORIA (Antonio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ROUCHON (Pierre)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105</s1>
<s2>78153 Le Chesnay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>SISSA</s1>
<s2>Trieste</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Univ. of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Austalian National University</s1>
<s2>Canberra</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>CNRS</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>MinesParisTech</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>2067-2073</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222E4</s2>
<s5>354000504408830160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0375638</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on automatic control</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Identification système</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>System identification</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Identificación sistema</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Observateur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Observer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Observador</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Temps minimal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Minimum time</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tiempo mínimo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Milieu confiné</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Confined space</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Medio confinado</s0>
<s5>15</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Condition initiale</s0>
<s5>24</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Initial condition</s0>
<s5>24</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Condición inicial</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode Lyapunov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Lyapunov method</s0>
<s5>25</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método Lyapunov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Equation onde</s0>
<s5>28</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Wave equation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ecuación onda</s0>
<s5>28</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Problème Neumann</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Neumann problem</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Problema Neumann</s0>
<s5>29</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode itérative</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Iterative method</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método iterativo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Approximation asymptotique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Asymptotic approximation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aproximación asintótica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Problème inverse</s0>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Inverse problem</s0>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Problema inverso</s0>
<s5>32</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Terme source</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Source terms</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Término fuente</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>289</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0375638 INIST</NO>
<ET>Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach</ET>
<AU>CHAPOULY (Marianne); MIRRAHIMI (Mazyar); ALTAFINI (Claudio); BLOCH (Anthony M.); JAMES (Matthew R.); LORIA (Antonio); ROUCHON (Pierre)</AU>
<AF>INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105/78153 Le Chesnay/France (1 aut., 2 aut.); SISSA/Trieste/Italie (1 aut.); Univ. of Michigan/Ann Arbor, MI/Etats-Unis (2 aut.); Austalian National University/Canberra/Australie (3 aut.); CNRS/Gif-sur-Yvette/France (4 aut.); MinesParisTech/Paris/France (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on automatic control; ISSN 0018-9286; Coden IETAA9; Etats-Unis; Da. 2012; Vol. 57; No. 8; Pp. 2067-2073; Bibl. 16 ref.</SO>
<LA>Anglais</LA>
<EA>In this paper, we consider the 1-D wave equation where the spatial domain is a bounded interval. Assuming the initial conditions to be known, we are here interested in identifying an unknown source term, while we take the Neumann derivative of the solution on one of the boundaries as the measurement output. Applying a back-and-forth iterative scheme and constructing well-chosen observers (that will be applied in an offline manner), we retrieve the source term from the measurement output in the minimal observation time.</EA>
<CC>001D02D05</CC>
<FD>Identification système; Observateur; Temps minimal; Milieu confiné; Modélisation; Condition initiale; Méthode Lyapunov; Equation onde; Problème Neumann; Méthode itérative; Approximation asymptotique; Problème inverse; .; Terme source</FD>
<ED>System identification; Observer; Minimum time; Confined space; Modeling; Initial condition; Lyapunov method; Wave equation; Neumann problem; Iterative method; Asymptotic approximation; Inverse problem; Source terms</ED>
<SD>Identificación sistema; Observador; Tiempo mínimo; Medio confinado; Modelización; Condición inicial; Método Lyapunov; Ecuación onda; Problema Neumann; Método iterativo; Aproximación asintótica; Problema inverso; Término fuente</SD>
<LO>INIST-222E4.354000504408830160</LO>
<ID>12-0375638</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0375638
   |texte=   Distributed Source Identification for Wave Equations: An Offline Observer-Based Approach
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024