Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A global model for the uptake of atmospheric hydrogen by soils

Identifieur interne : 000F02 ( PascalFrancis/Corpus ); précédent : 000F01; suivant : 000F03

A global model for the uptake of atmospheric hydrogen by soils

Auteurs : C. Morfopoulos ; P. N. Foster ; P. Friedlingstein ; P. Bousquet ; I. C. Prentice

Source :

RBID : Pascal:12-0426403

Descripteurs français

English descriptors

Abstract

[1] A simple process-based model for the consumption of atmospheric hydrogen (H2) has been developed. The model includes a description of diffusion and biological processes which together control H2 flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H2 fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H2 uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H2 sink from soils, with a trend of -0.77 Tg a-2 for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H2). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a-2. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0886-6236
A02 01      @0 GBCYEP
A03   1    @0 Glob. biogeochem. cycles
A05       @2 26
A06       @2 3
A08 01  1  ENG  @1 A global model for the uptake of atmospheric hydrogen by soils
A11 01  1    @1 MORFOPOULOS (C.)
A11 02  1    @1 FOSTER (P. N.)
A11 03  1    @1 FRIEDLINGSTEIN (P.)
A11 04  1    @1 BOUSQUET (P.)
A11 05  1    @1 PRENTICE (I. C.)
A14 01      @1 Division of Biology, Imperial College @2 Ascot @3 GBR @Z 1 aut. @Z 5 aut.
A14 02      @1 Department of Earth Sciences, University of Bristol @2 Bristol @3 GBR @Z 2 aut.
A14 03      @1 College of Engineering, Mathematics and Physical Sciences, University of Exeter @2 Exeter @3 GBR @Z 3 aut.
A14 04      @1 Laboratoire des Sciences du Climat et de l'Environnement, CEA @2 Gif-sur-Yvette @3 FRA @Z 4 aut.
A14 05      @1 Department of Biological Sciences, Macquarie University, North Ryde @2 New South Wales @3 AUS @Z 5 aut.
A20       @2 GB3013.1-GB3013.13
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 21109 @5 354000509584540130
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0426403
A60       @1 P
A61       @0 A
A64 01  1    @0 Global biogeochemical cycles
A66 01      @0 USA
C01 01    ENG  @0 [1] A simple process-based model for the consumption of atmospheric hydrogen (H2) has been developed. The model includes a description of diffusion and biological processes which together control H2 flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H2 fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H2 uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H2 sink from soils, with a trend of -0.77 Tg a-2 for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H2). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a-2. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.
C02 01  X    @0 002A14B04A
C02 02  2    @0 001E01B
C02 03  2    @0 220B
C03 01  2  FRE  @0 Monde @5 01
C03 01  2  ENG  @0 global @5 01
C03 01  2  SPA  @0 Mundo @5 01
C03 02  2  FRE  @0 Modèle @5 02
C03 02  2  ENG  @0 models @5 02
C03 02  2  SPA  @0 Modelo @5 02
C03 03  2  FRE  @0 Hydrogène @5 03
C03 03  2  ENG  @0 hydrogen @5 03
C03 03  2  SPA  @0 Hidrógeno @5 03
C03 04  2  FRE  @0 Sol @2 NT @5 04
C03 04  2  ENG  @0 soils @2 NT @5 04
C03 04  2  SPA  @0 Suelo @2 NT @5 04
C03 05  2  FRE  @0 Consommation @5 05
C03 05  2  ENG  @0 consumption @5 05
C03 05  2  SPA  @0 Consumo @5 05
C03 06  2  FRE  @0 Description @5 06
C03 06  2  ENG  @0 description @5 06
C03 07  2  FRE  @0 Diffusion @5 07
C03 07  2  ENG  @0 diffusion @5 07
C03 07  2  SPA  @0 Difusión @5 07
C03 08  2  FRE  @0 Dynamique @5 08
C03 08  2  ENG  @0 dynamics @5 08
C03 08  2  SPA  @0 Dinámica @5 08
C03 09  2  FRE  @0 Végétation @5 09
C03 09  2  ENG  @0 vegetation @5 09
C03 09  2  SPA  @0 Vegetación @5 09
C03 10  X  FRE  @0 Etude en laboratoire @5 10
C03 10  X  ENG  @0 Laboratory study @5 10
C03 10  X  SPA  @0 Estudio en laboratorio @5 10
C03 11  2  FRE  @0 Cycle @5 11
C03 11  2  ENG  @0 cycles @5 11
C03 12  2  FRE  @0 Température @5 12
C03 12  2  ENG  @0 temperature @5 12
C03 12  2  SPA  @0 Temperatura @5 12
C03 13  2  FRE  @0 Teneur eau @5 13
C03 13  2  ENG  @0 water content @5 13
C03 13  2  SPA  @0 Contenido en agua @5 13
C03 14  2  FRE  @0 Problème inverse @5 14
C03 14  2  ENG  @0 inverse problem @5 14
C03 14  2  SPA  @0 Problema inverso @5 14
C03 15  X  FRE  @0 Couverture neige @5 15
C03 15  X  ENG  @0 Snow cover @5 15
C03 15  X  SPA  @0 Cubierta nieve @5 15
C03 16  2  FRE  @0 Profondeur @5 16
C03 16  2  ENG  @0 depth @5 16
C03 16  2  SPA  @0 Profundidad @5 16
N21       @1 331
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0426403 INIST
ET : A global model for the uptake of atmospheric hydrogen by soils
AU : MORFOPOULOS (C.); FOSTER (P. N.); FRIEDLINGSTEIN (P.); BOUSQUET (P.); PRENTICE (I. C.)
AF : Division of Biology, Imperial College/Ascot/Royaume-Uni (1 aut., 5 aut.); Department of Earth Sciences, University of Bristol/Bristol/Royaume-Uni (2 aut.); College of Engineering, Mathematics and Physical Sciences, University of Exeter/Exeter/Royaume-Uni (3 aut.); Laboratoire des Sciences du Climat et de l'Environnement, CEA/Gif-sur-Yvette/France (4 aut.); Department of Biological Sciences, Macquarie University, North Ryde/New South Wales/Australie (5 aut.)
DT : Publication en série; Niveau analytique
SO : Global biogeochemical cycles; ISSN 0886-6236; Coden GBCYEP; Etats-Unis; Da. 2012; Vol. 26; No. 3; GB3013.1-GB3013.13; Bibl. 3/4 p.
LA : Anglais
EA : [1] A simple process-based model for the consumption of atmospheric hydrogen (H2) has been developed. The model includes a description of diffusion and biological processes which together control H2 flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H2 fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H2 uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H2 sink from soils, with a trend of -0.77 Tg a-2 for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H2). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a-2. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.
CC : 002A14B04A; 001E01B; 220B
FD : Monde; Modèle; Hydrogène; Sol; Consommation; Description; Diffusion; Dynamique; Végétation; Etude en laboratoire; Cycle; Température; Teneur eau; Problème inverse; Couverture neige; Profondeur
ED : global; models; hydrogen; soils; consumption; description; diffusion; dynamics; vegetation; Laboratory study; cycles; temperature; water content; inverse problem; Snow cover; depth
SD : Mundo; Modelo; Hidrógeno; Suelo; Consumo; Difusión; Dinámica; Vegetación; Estudio en laboratorio; Temperatura; Contenido en agua; Problema inverso; Cubierta nieve; Profundidad
LO : INIST-21109.354000509584540130
ID : 12-0426403

Links to Exploration step

Pascal:12-0426403

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A global model for the uptake of atmospheric hydrogen by soils</title>
<author>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Biology, Imperial College</s1>
<s2>Ascot</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Foster, P N" sort="Foster, P N" uniqKey="Foster P" first="P. N." last="Foster">P. N. Foster</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Friedlingstein, P" sort="Friedlingstein, P" uniqKey="Friedlingstein P" first="P." last="Friedlingstein">P. Friedlingstein</name>
<affiliation>
<inist:fA14 i1="03">
<s1>College of Engineering, Mathematics and Physical Sciences, University of Exeter</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, CEA</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Biology, Imperial College</s1>
<s2>Ascot</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Biological Sciences, Macquarie University, North Ryde</s1>
<s2>New South Wales</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0426403</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0426403 INIST</idno>
<idno type="RBID">Pascal:12-0426403</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000F02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A global model for the uptake of atmospheric hydrogen by soils</title>
<author>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Biology, Imperial College</s1>
<s2>Ascot</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Foster, P N" sort="Foster, P N" uniqKey="Foster P" first="P. N." last="Foster">P. N. Foster</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Friedlingstein, P" sort="Friedlingstein, P" uniqKey="Friedlingstein P" first="P." last="Friedlingstein">P. Friedlingstein</name>
<affiliation>
<inist:fA14 i1="03">
<s1>College of Engineering, Mathematics and Physical Sciences, University of Exeter</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, CEA</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Biology, Imperial College</s1>
<s2>Ascot</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Biological Sciences, Macquarie University, North Ryde</s1>
<s2>New South Wales</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Global biogeochemical cycles</title>
<title level="j" type="abbreviated">Glob. biogeochem. cycles</title>
<idno type="ISSN">0886-6236</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Global biogeochemical cycles</title>
<title level="j" type="abbreviated">Glob. biogeochem. cycles</title>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Laboratory study</term>
<term>Snow cover</term>
<term>consumption</term>
<term>cycles</term>
<term>depth</term>
<term>description</term>
<term>diffusion</term>
<term>dynamics</term>
<term>global</term>
<term>hydrogen</term>
<term>inverse problem</term>
<term>models</term>
<term>soils</term>
<term>temperature</term>
<term>vegetation</term>
<term>water content</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Monde</term>
<term>Modèle</term>
<term>Hydrogène</term>
<term>Sol</term>
<term>Consommation</term>
<term>Description</term>
<term>Diffusion</term>
<term>Dynamique</term>
<term>Végétation</term>
<term>Etude en laboratoire</term>
<term>Cycle</term>
<term>Température</term>
<term>Teneur eau</term>
<term>Problème inverse</term>
<term>Couverture neige</term>
<term>Profondeur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] A simple process-based model for the consumption of atmospheric hydrogen (H
<sub>2</sub>
) has been developed. The model includes a description of diffusion and biological processes which together control H
<sub>2</sub>
flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H
<sub>2</sub>
fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H
<sub>2</sub>
uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H
<sub>2</sub>
sink from soils, with a trend of -0.77 Tg a
<sup>-2 </sup>
for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H
<sub>2</sub>
). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a
<sup>-2</sup>
. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0886-6236</s0>
</fA01>
<fA02 i1="01">
<s0>GBCYEP</s0>
</fA02>
<fA03 i2="1">
<s0>Glob. biogeochem. cycles</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A global model for the uptake of atmospheric hydrogen by soils</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MORFOPOULOS (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FOSTER (P. N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FRIEDLINGSTEIN (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOUSQUET (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PRENTICE (I. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Biology, Imperial College</s1>
<s2>Ascot</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>College of Engineering, Mathematics and Physical Sciences, University of Exeter</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, CEA</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Biological Sciences, Macquarie University, North Ryde</s1>
<s2>New South Wales</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>GB3013.1-GB3013.13</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21109</s2>
<s5>354000509584540130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0426403</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Global biogeochemical cycles</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] A simple process-based model for the consumption of atmospheric hydrogen (H
<sub>2</sub>
) has been developed. The model includes a description of diffusion and biological processes which together control H
<sub>2</sub>
flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H
<sub>2</sub>
fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H
<sub>2</sub>
uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H
<sub>2</sub>
sink from soils, with a trend of -0.77 Tg a
<sup>-2 </sup>
for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H
<sub>2</sub>
). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a
<sup>-2</sup>
. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B04A</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01B</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220B</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Monde</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>global</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>models</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Hydrogène</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>hydrogen</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Hidrógeno</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>soils</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Consommation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>consumption</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Consumo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Description</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>description</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Diffusion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>diffusion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Difusión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Végétation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>vegetation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Vegetación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etude en laboratoire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Laboratory study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estudio en laboratorio</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Cycle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>cycles</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Temperatura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Teneur eau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>water content</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Contenido en agua</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Couverture neige</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Snow cover</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cubierta nieve</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Profondeur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>depth</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Profundidad</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>331</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0426403 INIST</NO>
<ET>A global model for the uptake of atmospheric hydrogen by soils</ET>
<AU>MORFOPOULOS (C.); FOSTER (P. N.); FRIEDLINGSTEIN (P.); BOUSQUET (P.); PRENTICE (I. C.)</AU>
<AF>Division of Biology, Imperial College/Ascot/Royaume-Uni (1 aut., 5 aut.); Department of Earth Sciences, University of Bristol/Bristol/Royaume-Uni (2 aut.); College of Engineering, Mathematics and Physical Sciences, University of Exeter/Exeter/Royaume-Uni (3 aut.); Laboratoire des Sciences du Climat et de l'Environnement, CEA/Gif-sur-Yvette/France (4 aut.); Department of Biological Sciences, Macquarie University, North Ryde/New South Wales/Australie (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Global biogeochemical cycles; ISSN 0886-6236; Coden GBCYEP; Etats-Unis; Da. 2012; Vol. 26; No. 3; GB3013.1-GB3013.13; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] A simple process-based model for the consumption of atmospheric hydrogen (H
<sub>2</sub>
) has been developed. The model includes a description of diffusion and biological processes which together control H
<sub>2</sub>
flux into the soil. The model was incorporated into the LPJ-WHyMe Dynamic Global Vegetation Model, and used to simulate H
<sub>2</sub>
fluxes over the 1988-2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H
<sub>2</sub>
uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H
<sub>2</sub>
sink from soils, with a trend of -0.77 Tg a
<sup>-2 </sup>
for the 1992-2004 period (fluxes are negative as soils act as a sink for atmospheric H
<sub>2</sub>
). For the same period, however, our process-based model calculates a trend of only -0.04 Tg a
<sup>-2</sup>
. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion-based study, questioning the realism of such a large trend.</EA>
<CC>002A14B04A; 001E01B; 220B</CC>
<FD>Monde; Modèle; Hydrogène; Sol; Consommation; Description; Diffusion; Dynamique; Végétation; Etude en laboratoire; Cycle; Température; Teneur eau; Problème inverse; Couverture neige; Profondeur</FD>
<ED>global; models; hydrogen; soils; consumption; description; diffusion; dynamics; vegetation; Laboratory study; cycles; temperature; water content; inverse problem; Snow cover; depth</ED>
<SD>Mundo; Modelo; Hidrógeno; Suelo; Consumo; Difusión; Dinámica; Vegetación; Estudio en laboratorio; Temperatura; Contenido en agua; Problema inverso; Cubierta nieve; Profundidad</SD>
<LO>INIST-21109.354000509584540130</LO>
<ID>12-0426403</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000F02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0426403
   |texte=   A global model for the uptake of atmospheric hydrogen by soils
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024