Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

Identifieur interne : 000E68 ( PascalFrancis/Corpus ); précédent : 000E67; suivant : 000E69

Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

Auteurs : M. Falanga ; L. Kuiper ; J. Poutanen ; D. K. Galloway ; E. Bozzo ; A. Goldwurm ; W. Hermsen ; L. Stella

Source :

RBID : Pascal:12-0446395

Descripteurs français

English descriptors

Abstract

Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kTe ∼ 50 keV, soft seed photons of kTbb ∼ 1 keV, and Thomson optical depth τT ∼ I in a slab geometry. The slab area corresponds to a black body radius of Rbb ∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0004-6361
A02 01      @0 AAEJAF
A03   1    @0 Astron. astrophys. : (Berl., Print)
A05       @2 545
A06       @3 p. 1
A08 01  1  ENG  @1 Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921
A11 01  1    @1 FALANGA (M.)
A11 02  1    @1 KUIPER (L.)
A11 03  1    @1 POUTANEN (J.)
A11 04  1    @1 GALLOWAY (D. K.)
A11 05  1    @1 BOZZO (E.)
A11 06  1    @1 GOLDWURM (A.)
A11 07  1    @1 HERMSEN (W.)
A11 08  1    @1 STELLA (L.)
A14 01      @1 International Space Science Institute (ISSI), Hallerstrasse 6 @2 3012 Bern @3 CHE @Z 1 aut.
A14 02      @1 SRON - Netherlands Institute for Space Research, Sorbonnelaan 2 @2 3584 CA Utrecht @3 NLD @Z 2 aut. @Z 7 aut.
A14 03      @1 Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu @3 FIN @Z 3 aut.
A14 04      @1 Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University @2 VIC 3800 @3 AUS @Z 4 aut.
A14 05      @1 ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16 @2 1290 Versoix @3 CHE @Z 5 aut.
A14 06      @1 Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 6 aut.
A14 07      @1 Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet @2 75205 Paris @3 FRA @Z 6 aut.
A14 08      @1 Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904 @2 1098 XH, Amsterdam @3 NLD @Z 7 aut.
A14 09      @1 INAF - Osservatorio Astronomico di Roma, via Frascati 33 @2 00040 Monteporzio Catone (Roma) @3 ITA @Z 8 aut.
A20       @2 A26.1-A26.9
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14176 @5 354000506869230270
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 12-0446395
A60       @1 P
A61       @0 A
A64 01  1    @0 Astronomy and astrophysics : (Berlin. Print)
A66 01      @0 FRA
C01 01    ENG  @0 Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kTe ∼ 50 keV, soft seed photons of kTbb ∼ 1 keV, and Thomson optical depth τT ∼ I in a slab geometry. The slab area corresponds to a black body radius of Rbb ∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
C02 01  3    @0 001E03
C03 01  X  FRE  @0 Propriété spectrale @5 26
C03 01  X  ENG  @0 Spectral properties @5 26
C03 01  X  SPA  @0 Propiedad espectral @5 26
C03 02  3  FRE  @0 Timing @5 27
C03 02  3  ENG  @0 Timing @5 27
C03 03  X  FRE  @0 Pulsar RX @5 28
C03 03  X  ENG  @0 X ray pulsar @5 28
C03 03  X  SPA  @0 Pulsar RX @5 28
C03 04  X  FRE  @0 Source RX transitoire @5 29
C03 04  X  ENG  @0 Transient X ray source @5 29
C03 04  X  SPA  @0 Fuente RX transitoria @5 29
C03 05  X  FRE  @0 Pulsar milliseconde @5 30
C03 05  X  ENG  @0 Millisecond pulsar @5 30
C03 05  X  SPA  @0 Pulsar milisegundo @5 30
C03 06  X  FRE  @0 Sursaut RX @5 31
C03 06  X  ENG  @0 X ray burst @5 31
C03 06  X  SPA  @0 Arrebato RX @5 31
C03 07  3  FRE  @0 Domaine énergie keV @5 32
C03 07  3  ENG  @0 keV range @5 32
C03 08  3  FRE  @0 Courbe lumière @5 33
C03 08  3  ENG  @0 Light curves @5 33
C03 09  X  FRE  @0 Forme impulsion @5 34
C03 09  X  ENG  @0 Pulse shape @5 34
C03 09  X  SPA  @0 Forma impulsión @5 34
C03 10  3  FRE  @0 Température électron @5 35
C03 10  3  ENG  @0 Electron temperature @5 35
C03 11  X  FRE  @0 Epaisseur optique @5 36
C03 11  X  ENG  @0 Optical thickness @5 36
C03 11  X  SPA  @0 Espesor óptico @5 36
C03 12  3  FRE  @0 Plasma @5 37
C03 12  3  ENG  @0 Plasma @5 37
C03 13  3  FRE  @0 Température photon @5 38
C03 13  3  ENG  @0 Photon temperature @5 38
C03 14  X  FRE  @0 Diffusion optique @5 39
C03 14  X  ENG  @0 Optical scattering @5 39
C03 14  X  SPA  @0 Difusión óptica @5 39
C03 15  X  FRE  @0 Emission RX @5 40
C03 15  X  ENG  @0 X ray emission @5 40
C03 15  X  SPA  @0 Emisión RX @5 40
C03 16  3  FRE  @0 Etoile neutron @5 41
C03 16  3  ENG  @0 Neutron stars @5 41
C03 17  3  FRE  @0 Accrétion @5 42
C03 17  3  ENG  @0 Accretion @5 42
C03 18  X  FRE  @0 Pulsation RX @5 43
C03 18  X  ENG  @0 X ray pulsation @5 43
C03 18  X  SPA  @0 Pulsación rayos X @5 43
C03 19  X  FRE  @0 Métallicité @5 44
C03 19  X  ENG  @0 Metallicity @5 44
C03 19  X  SPA  @0 Metalicidad @5 44
C03 20  X  FRE  @0 Modèle @5 45
C03 20  X  ENG  @0 Models @5 45
C03 20  X  SPA  @0 Modelo @5 45
C03 21  3  FRE  @0 Binaire RX @5 46
C03 21  3  ENG  @0 X-ray binary stars @5 46
C03 22  X  FRE  @0 Source RX binaire @5 47
C03 22  X  ENG  @0 Binary X ray source @5 47
C03 22  X  SPA  @0 Fuente RX binaria @5 47
C03 23  3  FRE  @0 Source RX cosmique @5 48
C03 23  3  ENG  @0 Cosmic x-ray sources @5 48
N21       @1 345
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0446395 INIST
ET : Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921
AU : FALANGA (M.); KUIPER (L.); POUTANEN (J.); GALLOWAY (D. K.); BOZZO (E.); GOLDWURM (A.); HERMSEN (W.); STELLA (L.)
AF : International Space Science Institute (ISSI), Hallerstrasse 6/3012 Bern/Suisse (1 aut.); SRON - Netherlands Institute for Space Research, Sorbonnelaan 2/3584 CA Utrecht/Pays-Bas (2 aut., 7 aut.); Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu/Finlande (3 aut.); Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University/VIC 3800/Australie (4 aut.); ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16/1290 Versoix/Suisse (5 aut.); Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay/91191 Gif-sur-Yvette/France (6 aut.); Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet/75205 Paris/France (6 aut.); Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904/1098 XH, Amsterdam/Pays-Bas (7 aut.); INAF - Osservatorio Astronomico di Roma, via Frascati 33/00040 Monteporzio Catone (Roma)/Italie (8 aut.)
DT : Publication en série; Niveau analytique
SO : Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 545; No. p. 1; A26.1-A26.9; Bibl. 1/2 p.
LA : Anglais
EA : Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kTe ∼ 50 keV, soft seed photons of kTbb ∼ 1 keV, and Thomson optical depth τT ∼ I in a slab geometry. The slab area corresponds to a black body radius of Rbb ∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
CC : 001E03
FD : Propriété spectrale; Timing; Pulsar RX; Source RX transitoire; Pulsar milliseconde; Sursaut RX; Domaine énergie keV; Courbe lumière; Forme impulsion; Température électron; Epaisseur optique; Plasma; Température photon; Diffusion optique; Emission RX; Etoile neutron; Accrétion; Pulsation RX; Métallicité; Modèle; Binaire RX; Source RX binaire; Source RX cosmique
ED : Spectral properties; Timing; X ray pulsar; Transient X ray source; Millisecond pulsar; X ray burst; keV range; Light curves; Pulse shape; Electron temperature; Optical thickness; Plasma; Photon temperature; Optical scattering; X ray emission; Neutron stars; Accretion; X ray pulsation; Metallicity; Models; X-ray binary stars; Binary X ray source; Cosmic x-ray sources
SD : Propiedad espectral; Pulsar RX; Fuente RX transitoria; Pulsar milisegundo; Arrebato RX; Forma impulsión; Espesor óptico; Difusión óptica; Emisión RX; Pulsación rayos X; Metalicidad; Modelo; Fuente RX binaria
LO : INIST-14176.354000506869230270
ID : 12-0446395

Links to Exploration step

Pascal:12-0446395

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921</title>
<author>
<name sortKey="Falanga, M" sort="Falanga, M" uniqKey="Falanga M" first="M." last="Falanga">M. Falanga</name>
<affiliation>
<inist:fA14 i1="01">
<s1>International Space Science Institute (ISSI), Hallerstrasse 6</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuiper, L" sort="Kuiper, L" uniqKey="Kuiper L" first="L." last="Kuiper">L. Kuiper</name>
<affiliation>
<inist:fA14 i1="02">
<s1>SRON - Netherlands Institute for Space Research, Sorbonnelaan 2</s1>
<s2>3584 CA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poutanen, J" sort="Poutanen, J" uniqKey="Poutanen J" first="J." last="Poutanen">J. Poutanen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu</s1>
<s3>FIN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Galloway, D K" sort="Galloway, D K" uniqKey="Galloway D" first="D. K." last="Galloway">D. K. Galloway</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University</s1>
<s2>VIC 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bozzo, E" sort="Bozzo, E" uniqKey="Bozzo E" first="E." last="Bozzo">E. Bozzo</name>
<affiliation>
<inist:fA14 i1="05">
<s1>ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16</s1>
<s2>1290 Versoix</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goldwurm, A" sort="Goldwurm, A" uniqKey="Goldwurm A" first="A." last="Goldwurm">A. Goldwurm</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet</s1>
<s2>75205 Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hermsen, W" sort="Hermsen, W" uniqKey="Hermsen W" first="W." last="Hermsen">W. Hermsen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>SRON - Netherlands Institute for Space Research, Sorbonnelaan 2</s1>
<s2>3584 CA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="08">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904</s1>
<s2>1098 XH, Amsterdam</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stella, L" sort="Stella, L" uniqKey="Stella L" first="L." last="Stella">L. Stella</name>
<affiliation>
<inist:fA14 i1="09">
<s1>INAF - Osservatorio Astronomico di Roma, via Frascati 33</s1>
<s2>00040 Monteporzio Catone (Roma)</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0446395</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0446395 INIST</idno>
<idno type="RBID">Pascal:12-0446395</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921</title>
<author>
<name sortKey="Falanga, M" sort="Falanga, M" uniqKey="Falanga M" first="M." last="Falanga">M. Falanga</name>
<affiliation>
<inist:fA14 i1="01">
<s1>International Space Science Institute (ISSI), Hallerstrasse 6</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuiper, L" sort="Kuiper, L" uniqKey="Kuiper L" first="L." last="Kuiper">L. Kuiper</name>
<affiliation>
<inist:fA14 i1="02">
<s1>SRON - Netherlands Institute for Space Research, Sorbonnelaan 2</s1>
<s2>3584 CA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poutanen, J" sort="Poutanen, J" uniqKey="Poutanen J" first="J." last="Poutanen">J. Poutanen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu</s1>
<s3>FIN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Galloway, D K" sort="Galloway, D K" uniqKey="Galloway D" first="D. K." last="Galloway">D. K. Galloway</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University</s1>
<s2>VIC 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bozzo, E" sort="Bozzo, E" uniqKey="Bozzo E" first="E." last="Bozzo">E. Bozzo</name>
<affiliation>
<inist:fA14 i1="05">
<s1>ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16</s1>
<s2>1290 Versoix</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goldwurm, A" sort="Goldwurm, A" uniqKey="Goldwurm A" first="A." last="Goldwurm">A. Goldwurm</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet</s1>
<s2>75205 Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hermsen, W" sort="Hermsen, W" uniqKey="Hermsen W" first="W." last="Hermsen">W. Hermsen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>SRON - Netherlands Institute for Space Research, Sorbonnelaan 2</s1>
<s2>3584 CA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="08">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904</s1>
<s2>1098 XH, Amsterdam</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stella, L" sort="Stella, L" uniqKey="Stella L" first="L." last="Stella">L. Stella</name>
<affiliation>
<inist:fA14 i1="09">
<s1>INAF - Osservatorio Astronomico di Roma, via Frascati 33</s1>
<s2>00040 Monteporzio Catone (Roma)</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretion</term>
<term>Binary X ray source</term>
<term>Cosmic x-ray sources</term>
<term>Electron temperature</term>
<term>Light curves</term>
<term>Metallicity</term>
<term>Millisecond pulsar</term>
<term>Models</term>
<term>Neutron stars</term>
<term>Optical scattering</term>
<term>Optical thickness</term>
<term>Photon temperature</term>
<term>Plasma</term>
<term>Pulse shape</term>
<term>Spectral properties</term>
<term>Timing</term>
<term>Transient X ray source</term>
<term>X ray burst</term>
<term>X ray emission</term>
<term>X ray pulsar</term>
<term>X ray pulsation</term>
<term>X-ray binary stars</term>
<term>keV range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété spectrale</term>
<term>Timing</term>
<term>Pulsar RX</term>
<term>Source RX transitoire</term>
<term>Pulsar milliseconde</term>
<term>Sursaut RX</term>
<term>Domaine énergie keV</term>
<term>Courbe lumière</term>
<term>Forme impulsion</term>
<term>Température électron</term>
<term>Epaisseur optique</term>
<term>Plasma</term>
<term>Température photon</term>
<term>Diffusion optique</term>
<term>Emission RX</term>
<term>Etoile neutron</term>
<term>Accrétion</term>
<term>Pulsation RX</term>
<term>Métallicité</term>
<term>Modèle</term>
<term>Binaire RX</term>
<term>Source RX binaire</term>
<term>Source RX cosmique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT
<sub>e</sub>
∼ 50 keV, soft seed photons of kT
<sub>bb</sub>
∼ 1 keV, and Thomson optical depth τ
<sub>T</sub>
∼ I in a slab geometry. The slab area corresponds to a black body radius of R
<sub>bb</sub>
∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0004-6361</s0>
</fA01>
<fA02 i1="01">
<s0>AAEJAF</s0>
</fA02>
<fA03 i2="1">
<s0>Astron. astrophys. : (Berl., Print)</s0>
</fA03>
<fA05>
<s2>545</s2>
</fA05>
<fA06>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FALANGA (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KUIPER (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>POUTANEN (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GALLOWAY (D. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BOZZO (E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOLDWURM (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HERMSEN (W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>STELLA (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>International Space Science Institute (ISSI), Hallerstrasse 6</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>SRON - Netherlands Institute for Space Research, Sorbonnelaan 2</s1>
<s2>3584 CA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu</s1>
<s3>FIN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University</s1>
<s2>VIC 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16</s1>
<s2>1290 Versoix</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet</s1>
<s2>75205 Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904</s1>
<s2>1098 XH, Amsterdam</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>INAF - Osservatorio Astronomico di Roma, via Frascati 33</s1>
<s2>00040 Monteporzio Catone (Roma)</s2>
<s3>ITA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>A26.1-A26.9</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14176</s2>
<s5>354000506869230270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0446395</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Astronomy and astrophysics : (Berlin. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT
<sub>e</sub>
∼ 50 keV, soft seed photons of kT
<sub>bb</sub>
∼ 1 keV, and Thomson optical depth τ
<sub>T</sub>
∼ I in a slab geometry. The slab area corresponds to a black body radius of R
<sub>bb</sub>
∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété spectrale</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Spectral properties</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad espectral</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Timing</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Timing</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pulsar RX</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>X ray pulsar</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pulsar RX</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Source RX transitoire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Transient X ray source</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fuente RX transitoria</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pulsar milliseconde</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Millisecond pulsar</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pulsar milisegundo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sursaut RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>X ray burst</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Arrebato RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Domaine énergie keV</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>keV range</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Courbe lumière</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Light curves</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Forme impulsion</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pulse shape</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Forma impulsión</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Température électron</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron temperature</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Epaisseur optique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical thickness</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espesor óptico</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plasma</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Plasma</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Température photon</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Photon temperature</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diffusion optique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Optical scattering</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Difusión óptica</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Emission RX</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>X ray emission</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Emisión RX</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etoile neutron</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Neutron stars</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Accrétion</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Accretion</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Pulsation RX</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>X ray pulsation</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Pulsación rayos X</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Métallicité</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Metallicity</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Metalicidad</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Models</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Binaire RX</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>X-ray binary stars</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Source RX binaire</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Binary X ray source</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fuente RX binaria</s0>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Source RX cosmique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Cosmic x-ray sources</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>345</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0446395 INIST</NO>
<ET>Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921</ET>
<AU>FALANGA (M.); KUIPER (L.); POUTANEN (J.); GALLOWAY (D. K.); BOZZO (E.); GOLDWURM (A.); HERMSEN (W.); STELLA (L.)</AU>
<AF>International Space Science Institute (ISSI), Hallerstrasse 6/3012 Bern/Suisse (1 aut.); SRON - Netherlands Institute for Space Research, Sorbonnelaan 2/3584 CA Utrecht/Pays-Bas (2 aut., 7 aut.); Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu/Finlande (3 aut.); Monash Center for Astrophysics, School of Physics, and School of Mathematical Sciences, Monash University/VIC 3800/Australie (4 aut.); ISDC, Data centre for astrophysics, University of Geneva, Chemin d'Écogia 16/1290 Versoix/Suisse (5 aut.); Service d'Astrophysique (SAp), IRFU/DSM/CEA-Saclay/91191 Gif-sur-Yvette/France (6 aut.); Unite mixte de recherche Astroparticule et Cosmologie, 10 rue Alice Domon et Léonie Duquet/75205 Paris/France (6 aut.); Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904/1098 XH, Amsterdam/Pays-Bas (7 aut.); INAF - Osservatorio Astronomico di Roma, via Frascati 33/00040 Monteporzio Catone (Roma)/Italie (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 545; No. p. 1; A26.1-A26.9; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Context. IGR J 17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims. We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods. We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT
<sub>e</sub>
∼ 50 keV, soft seed photons of kT
<sub>bb</sub>
∼ 1 keV, and Thomson optical depth τ
<sub>T</sub>
∼ I in a slab geometry. The slab area corresponds to a black body radius of R
<sub>bb</sub>
∼ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ∼65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ∼-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.</EA>
<CC>001E03</CC>
<FD>Propriété spectrale; Timing; Pulsar RX; Source RX transitoire; Pulsar milliseconde; Sursaut RX; Domaine énergie keV; Courbe lumière; Forme impulsion; Température électron; Epaisseur optique; Plasma; Température photon; Diffusion optique; Emission RX; Etoile neutron; Accrétion; Pulsation RX; Métallicité; Modèle; Binaire RX; Source RX binaire; Source RX cosmique</FD>
<ED>Spectral properties; Timing; X ray pulsar; Transient X ray source; Millisecond pulsar; X ray burst; keV range; Light curves; Pulse shape; Electron temperature; Optical thickness; Plasma; Photon temperature; Optical scattering; X ray emission; Neutron stars; Accretion; X ray pulsation; Metallicity; Models; X-ray binary stars; Binary X ray source; Cosmic x-ray sources</ED>
<SD>Propiedad espectral; Pulsar RX; Fuente RX transitoria; Pulsar milisegundo; Arrebato RX; Forma impulsión; Espesor óptico; Difusión óptica; Emisión RX; Pulsación rayos X; Metalicidad; Modelo; Fuente RX binaria</SD>
<LO>INIST-14176.354000506869230270</LO>
<ID>12-0446395</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000E68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0446395
   |texte=   Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024