Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA

Identifieur interne : 000C97 ( PascalFrancis/Corpus ); précédent : 000C96; suivant : 000C98

Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA

Auteurs : J.-F. Gonzalez ; C. Pinte ; S. T. Maddison ; F. Menard ; L. Fouchet

Source :

RBID : Pascal:13-0057302

Descripteurs français

English descriptors

Abstract

Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 MJ planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 MJ planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 Mj planets on 40 AU orbits.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0004-6361
A02 01      @0 AAEJAF
A03   1    @0 Astron. astrophys. : (Berl., Print)
A05       @2 547
A06       @3 p. 1
A08 01  1  ENG  @1 Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA
A11 01  1    @1 GONZALEZ (J.-F.)
A11 02  1    @1 PINTE (C.)
A11 03  1    @1 MADDISON (S. T.)
A11 04  1    @1 MENARD (F.)
A11 05  1    @1 FOUCHET (L.)
A14 01      @1 Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon @2 69007 Lyon @3 FRA @Z 1 aut.
A14 02      @1 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274 @2 38041 Grenoble @3 FRA @Z 2 aut. @Z 4 aut.
A14 03      @1 Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218 @2 Hawthorn, VIC 3122 @3 AUS @Z 3 aut.
A14 04      @1 Physikalisches Institute, Universität Bern @2 3012 Bern @3 CHE @Z 5 aut.
A20       @2 A58.1-A58.12
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14176 @5 354000506259050570
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 13-0057302
A60       @1 P
A61       @0 A
A64 01  1    @0 Astronomy and astrophysics : (Berlin. Print)
A66 01      @0 FRA
C01 01    ENG  @0 Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 MJ planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 MJ planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 Mj planets on 40 AU orbits.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Planète Jupiter @5 26
C03 01  3  ENG  @0 Jupiter planet @5 26
C03 02  X  FRE  @0 Nébuleuse proto planétaire @5 27
C03 02  X  ENG  @0 Proto planetary nebula @5 27
C03 02  X  SPA  @0 Nebulosa proto planetaria @5 27
C03 03  3  FRE  @0 Grosseur grain @5 28
C03 03  3  ENG  @0 Grain size @5 28
C03 04  X  FRE  @0 Couplage faible @5 29
C03 04  X  ENG  @0 Weak coupling @5 29
C03 04  X  SPA  @0 Acoplamiento débil @5 29
C03 05  3  FRE  @0 Répartition spatiale @5 30
C03 05  3  ENG  @0 Spatial distribution @5 30
C03 06  3  FRE  @0 Dynamique @5 31
C03 06  3  ENG  @0 Dynamics @5 31
C03 07  X  FRE  @0 Méthode SPH @5 32
C03 07  X  ENG  @0 Smoothed particle hydrodynamics method @5 32
C03 07  X  SPA  @0 Método SPH @5 32
C03 08  3  FRE  @0 Transfert radiatif @5 33
C03 08  3  ENG  @0 Radiative transfer @5 33
C03 09  3  FRE  @0 Bruit thermique @5 34
C03 09  3  ENG  @0 Thermal noise @5 34
C03 10  3  FRE  @0 Bruit phase @5 35
C03 10  3  ENG  @0 Phase noise @5 35
C03 11  X  FRE  @0 Rapport gaz poussière @5 36
C03 11  X  ENG  @0 Gas to dust ratio @5 36
C03 11  X  SPA  @0 Relación gas polvo @5 36
C03 12  3  FRE  @0 Etoile proche @5 37
C03 12  3  ENG  @0 Nearby stars @5 37
C03 13  X  FRE  @0 Région formation stellaire @5 38
C03 13  X  ENG  @0 Stellar formation region @5 38
C03 13  X  SPA  @0 Región formación estelar @5 38
C03 14  3  FRE  @0 Orbite @5 39
C03 14  3  ENG  @0 Orbits @5 39
C03 15  X  FRE  @0 Méthode numérique @5 40
C03 15  X  ENG  @0 Numerical method @5 40
C03 15  X  SPA  @0 Método numérico @5 40
C03 16  X  FRE  @0 Système planétaire @5 41
C03 16  X  ENG  @0 Planetary system @5 41
C03 16  X  SPA  @0 Sistema planetario @5 41
N21       @1 035
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0057302 INIST
ET : Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA
AU : GONZALEZ (J.-F.); PINTE (C.); MADDISON (S. T.); MENARD (F.); FOUCHET (L.)
AF : Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon/69007 Lyon/France (1 aut.); UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274/38041 Grenoble/France (2 aut., 4 aut.); Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218/Hawthorn, VIC 3122/Australie (3 aut.); Physikalisches Institute, Universität Bern/3012 Bern/Suisse (5 aut.)
DT : Publication en série; Niveau analytique
SO : Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 547; No. p. 1; A58.1-A58.12; Bibl. 1/4 p.
LA : Anglais
EA : Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 MJ planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 MJ planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 Mj planets on 40 AU orbits.
CC : 001E03
FD : Planète Jupiter; Nébuleuse proto planétaire; Grosseur grain; Couplage faible; Répartition spatiale; Dynamique; Méthode SPH; Transfert radiatif; Bruit thermique; Bruit phase; Rapport gaz poussière; Etoile proche; Région formation stellaire; Orbite; Méthode numérique; Système planétaire
ED : Jupiter planet; Proto planetary nebula; Grain size; Weak coupling; Spatial distribution; Dynamics; Smoothed particle hydrodynamics method; Radiative transfer; Thermal noise; Phase noise; Gas to dust ratio; Nearby stars; Stellar formation region; Orbits; Numerical method; Planetary system
SD : Nebulosa proto planetaria; Acoplamiento débil; Método SPH; Relación gas polvo; Región formación estelar; Método numérico; Sistema planetario
LO : INIST-14176.354000506259050570
ID : 13-0057302

Links to Exploration step

Pascal:13-0057302

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</title>
<author>
<name sortKey="Gonzalez, J F" sort="Gonzalez, J F" uniqKey="Gonzalez J" first="J.-F." last="Gonzalez">J.-F. Gonzalez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon</s1>
<s2>69007 Lyon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Menard, F" sort="Menard, F" uniqKey="Menard F" first="F." last="Menard">F. Menard</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fouchet, L" sort="Fouchet, L" uniqKey="Fouchet L" first="L." last="Fouchet">L. Fouchet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Physikalisches Institute, Universität Bern</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0057302</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0057302 INIST</idno>
<idno type="RBID">Pascal:13-0057302</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</title>
<author>
<name sortKey="Gonzalez, J F" sort="Gonzalez, J F" uniqKey="Gonzalez J" first="J.-F." last="Gonzalez">J.-F. Gonzalez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon</s1>
<s2>69007 Lyon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Menard, F" sort="Menard, F" uniqKey="Menard F" first="F." last="Menard">F. Menard</name>
<affiliation>
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fouchet, L" sort="Fouchet, L" uniqKey="Fouchet L" first="L." last="Fouchet">L. Fouchet</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Physikalisches Institute, Universität Bern</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dynamics</term>
<term>Gas to dust ratio</term>
<term>Grain size</term>
<term>Jupiter planet</term>
<term>Nearby stars</term>
<term>Numerical method</term>
<term>Orbits</term>
<term>Phase noise</term>
<term>Planetary system</term>
<term>Proto planetary nebula</term>
<term>Radiative transfer</term>
<term>Smoothed particle hydrodynamics method</term>
<term>Spatial distribution</term>
<term>Stellar formation region</term>
<term>Thermal noise</term>
<term>Weak coupling</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Planète Jupiter</term>
<term>Nébuleuse proto planétaire</term>
<term>Grosseur grain</term>
<term>Couplage faible</term>
<term>Répartition spatiale</term>
<term>Dynamique</term>
<term>Méthode SPH</term>
<term>Transfert radiatif</term>
<term>Bruit thermique</term>
<term>Bruit phase</term>
<term>Rapport gaz poussière</term>
<term>Etoile proche</term>
<term>Région formation stellaire</term>
<term>Orbite</term>
<term>Méthode numérique</term>
<term>Système planétaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 M
<sub>J</sub>
planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 M
<sub>J</sub>
planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 M
<sub>j</sub>
planets on 40 AU orbits.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0004-6361</s0>
</fA01>
<fA02 i1="01">
<s0>AAEJAF</s0>
</fA02>
<fA03 i2="1">
<s0>Astron. astrophys. : (Berl., Print)</s0>
</fA03>
<fA05>
<s2>547</s2>
</fA05>
<fA06>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GONZALEZ (J.-F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PINTE (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MADDISON (S. T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MENARD (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FOUCHET (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon</s1>
<s2>69007 Lyon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Physikalisches Institute, Universität Bern</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>A58.1-A58.12</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14176</s2>
<s5>354000506259050570</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0057302</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Astronomy and astrophysics : (Berlin. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 M
<sub>J</sub>
planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 M
<sub>J</sub>
planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 M
<sub>j</sub>
planets on 40 AU orbits.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Planète Jupiter</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Jupiter planet</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nébuleuse proto planétaire</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Proto planetary nebula</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nebulosa proto planetaria</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couplage faible</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Weak coupling</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Acoplamiento débil</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Répartition spatiale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Spatial distribution</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dynamique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Dynamics</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode SPH</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Smoothed particle hydrodynamics method</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método SPH</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transfert radiatif</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Radiative transfer</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Bruit thermique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Thermal noise</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bruit phase</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Phase noise</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rapport gaz poussière</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gas to dust ratio</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Relación gas polvo</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etoile proche</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nearby stars</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Région formation stellaire</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stellar formation region</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Región formación estelar</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Orbite</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Orbits</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Système planétaire</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Planetary system</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sistema planetario</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>035</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0057302 INIST</NO>
<ET>Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</ET>
<AU>GONZALEZ (J.-F.); PINTE (C.); MADDISON (S. T.); MENARD (F.); FOUCHET (L.)</AU>
<AF>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon/69007 Lyon/France (1 aut.); UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274/38041 Grenoble/France (2 aut., 4 aut.); Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218/Hawthorn, VIC 3122/Australie (3 aut.); Physikalisches Institute, Universität Bern/3012 Bern/Suisse (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Astronomy and astrophysics : (Berlin. Print); ISSN 0004-6361; Coden AAEJAF; France; Da. 2012; Vol. 547; No. p. 1; A58.1-A58.12; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 M
<sub>J</sub>
planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 M
<sub>J</sub>
planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 M
<sub>j</sub>
planets on 40 AU orbits.</EA>
<CC>001E03</CC>
<FD>Planète Jupiter; Nébuleuse proto planétaire; Grosseur grain; Couplage faible; Répartition spatiale; Dynamique; Méthode SPH; Transfert radiatif; Bruit thermique; Bruit phase; Rapport gaz poussière; Etoile proche; Région formation stellaire; Orbite; Méthode numérique; Système planétaire</FD>
<ED>Jupiter planet; Proto planetary nebula; Grain size; Weak coupling; Spatial distribution; Dynamics; Smoothed particle hydrodynamics method; Radiative transfer; Thermal noise; Phase noise; Gas to dust ratio; Nearby stars; Stellar formation region; Orbits; Numerical method; Planetary system</ED>
<SD>Nebulosa proto planetaria; Acoplamiento débil; Método SPH; Relación gas polvo; Región formación estelar; Método numérico; Sistema planetario</SD>
<LO>INIST-14176.354000506259050570</LO>
<ID>13-0057302</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000C97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0057302
   |texte=   Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024