Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pressure gradient effects on the large-scale structure of turbulent boundary layers

Identifieur interne : 000B76 ( PascalFrancis/Corpus ); précédent : 000B75; suivant : 000B77

Pressure gradient effects on the large-scale structure of turbulent boundary layers

Auteurs : Zambri Harun ; Jason P. Monty ; Romain Mathis ; Ivan Marusic

Source :

RBID : Pascal:13-0111188

Descripteurs français

English descriptors

Abstract

Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 715
A08 01  1  ENG  @1 Pressure gradient effects on the large-scale structure of turbulent boundary layers
A11 01  1    @1 HARUN (Zambri)
A11 02  1    @1 MONTY (Jason P.)
A11 03  1    @1 MATHIS (Romain)
A11 04  1    @1 MARUSIC (Ivan)
A14 01      @1 Department of Mechanical Engineering, University of Melbourne @2 Victoria 3010 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Laboratoire de Mécanique de Lille, UMR CNRS 8107 @2 59655 Villeneuve d'Ascq @3 FRA @Z 3 aut.
A14 03      @1 Department of Mechanical and Materials Engineering, The National University of Malaysia @2 43600 Bangi @3 MYS @Z 1 aut.
A20       @1 477-498
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000182520810190
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 2 p.1/2
A47 01  1    @0 13-0111188
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.
C02 01  3    @0 001B40G27N
C03 01  3  FRE  @0 Couche limite @5 02
C03 01  3  ENG  @0 Boundary layers @5 02
C03 02  3  FRE  @0 Ecoulement turbulent @5 03
C03 02  3  ENG  @0 Turbulent flow @5 03
C03 03  X  FRE  @0 Structure turbulence @5 04
C03 03  X  ENG  @0 Turbulence structure @5 04
C03 03  X  SPA  @0 Estructura turbulencia @5 04
C03 04  3  FRE  @0 Gradient pression @5 08
C03 04  3  ENG  @0 Pressure gradients @5 08
C03 05  3  FRE  @0 Spectre énergie @5 09
C03 05  3  ENG  @0 Energy spectra @5 09
C03 06  3  FRE  @0 Etude expérimentale @5 15
C03 06  3  ENG  @0 Experimental study @5 15
C03 07  X  FRE  @0 Echelle grande @5 29
C03 07  X  ENG  @0 Large scale @5 29
C03 07  X  SPA  @0 Escala grande @5 29
C03 08  X  FRE  @0 Vitesse moyenne @5 30
C03 08  X  ENG  @0 Medium speed @5 30
C03 08  X  SPA  @0 Velocidad media @5 30
C03 09  3  FRE  @0 Analyse statistique @5 31
C03 09  3  ENG  @0 Statistical analysis @5 31
C03 10  3  FRE  @0 4727N @4 INC @5 56
N21       @1 084

Format Inist (serveur)

NO : PASCAL 13-0111188 INIST
ET : Pressure gradient effects on the large-scale structure of turbulent boundary layers
AU : HARUN (Zambri); MONTY (Jason P.); MATHIS (Romain); MARUSIC (Ivan)
AF : Department of Mechanical Engineering, University of Melbourne/Victoria 3010/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Laboratoire de Mécanique de Lille, UMR CNRS 8107/59655 Villeneuve d'Ascq/France (3 aut.); Department of Mechanical and Materials Engineering, The National University of Malaysia/43600 Bangi/Malaisie (1 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 715; Pp. 477-498; Bibl. 2 p.1/2
LA : Anglais
EA : Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.
CC : 001B40G27N
FD : Couche limite; Ecoulement turbulent; Structure turbulence; Gradient pression; Spectre énergie; Etude expérimentale; Echelle grande; Vitesse moyenne; Analyse statistique; 4727N
ED : Boundary layers; Turbulent flow; Turbulence structure; Pressure gradients; Energy spectra; Experimental study; Large scale; Medium speed; Statistical analysis
SD : Estructura turbulencia; Escala grande; Velocidad media
LO : INIST-5180.354000182520810190
ID : 13-0111188

Links to Exploration step

Pascal:13-0111188

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pressure gradient effects on the large-scale structure of turbulent boundary layers</title>
<author>
<name sortKey="Harun, Zambri" sort="Harun, Zambri" uniqKey="Harun Z" first="Zambri" last="Harun">Zambri Harun</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Mechanical and Materials Engineering, The National University of Malaysia</s1>
<s2>43600 Bangi</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Monty, Jason P" sort="Monty, Jason P" uniqKey="Monty J" first="Jason P." last="Monty">Jason P. Monty</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mathis, Romain" sort="Mathis, Romain" uniqKey="Mathis R" first="Romain" last="Mathis">Romain Mathis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique de Lille, UMR CNRS 8107</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marusic, Ivan" sort="Marusic, Ivan" uniqKey="Marusic I" first="Ivan" last="Marusic">Ivan Marusic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0111188</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0111188 INIST</idno>
<idno type="RBID">Pascal:13-0111188</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Pressure gradient effects on the large-scale structure of turbulent boundary layers</title>
<author>
<name sortKey="Harun, Zambri" sort="Harun, Zambri" uniqKey="Harun Z" first="Zambri" last="Harun">Zambri Harun</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Mechanical and Materials Engineering, The National University of Malaysia</s1>
<s2>43600 Bangi</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Monty, Jason P" sort="Monty, Jason P" uniqKey="Monty J" first="Jason P." last="Monty">Jason P. Monty</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mathis, Romain" sort="Mathis, Romain" uniqKey="Mathis R" first="Romain" last="Mathis">Romain Mathis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique de Lille, UMR CNRS 8107</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marusic, Ivan" sort="Marusic, Ivan" uniqKey="Marusic I" first="Ivan" last="Marusic">Ivan Marusic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boundary layers</term>
<term>Energy spectra</term>
<term>Experimental study</term>
<term>Large scale</term>
<term>Medium speed</term>
<term>Pressure gradients</term>
<term>Statistical analysis</term>
<term>Turbulence structure</term>
<term>Turbulent flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche limite</term>
<term>Ecoulement turbulent</term>
<term>Structure turbulence</term>
<term>Gradient pression</term>
<term>Spectre énergie</term>
<term>Etude expérimentale</term>
<term>Echelle grande</term>
<term>Vitesse moyenne</term>
<term>Analyse statistique</term>
<term>4727N</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>715</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pressure gradient effects on the large-scale structure of turbulent boundary layers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HARUN (Zambri)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MONTY (Jason P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MATHIS (Romain)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MARUSIC (Ivan)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Melbourne</s1>
<s2>Victoria 3010</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Mécanique de Lille, UMR CNRS 8107</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Mechanical and Materials Engineering, The National University of Malaysia</s1>
<s2>43600 Bangi</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>477-498</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000182520810190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0111188</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche limite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Boundary layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Structure turbulence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Turbulence structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estructura turbulencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Gradient pression</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pressure gradients</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectre énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Energy spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Vitesse moyenne</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Medium speed</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Velocidad media</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Analyse statistique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Statistical analysis</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4727N</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0111188 INIST</NO>
<ET>Pressure gradient effects on the large-scale structure of turbulent boundary layers</ET>
<AU>HARUN (Zambri); MONTY (Jason P.); MATHIS (Romain); MARUSIC (Ivan)</AU>
<AF>Department of Mechanical Engineering, University of Melbourne/Victoria 3010/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Laboratoire de Mécanique de Lille, UMR CNRS 8107/59655 Villeneuve d'Ascq/France (3 aut.); Department of Mechanical and Materials Engineering, The National University of Malaysia/43600 Bangi/Malaisie (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 715; Pp. 477-498; Bibl. 2 p.1/2</SO>
<LA>Anglais</LA>
<EA>Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692-701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1-28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625-645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101-131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.</EA>
<CC>001B40G27N</CC>
<FD>Couche limite; Ecoulement turbulent; Structure turbulence; Gradient pression; Spectre énergie; Etude expérimentale; Echelle grande; Vitesse moyenne; Analyse statistique; 4727N</FD>
<ED>Boundary layers; Turbulent flow; Turbulence structure; Pressure gradients; Energy spectra; Experimental study; Large scale; Medium speed; Statistical analysis</ED>
<SD>Estructura turbulencia; Escala grande; Velocidad media</SD>
<LO>INIST-5180.354000182520810190</LO>
<ID>13-0111188</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000B76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0111188
   |texte=   Pressure gradient effects on the large-scale structure of turbulent boundary layers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024