Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro

Identifieur interne : 000B09 ( PascalFrancis/Corpus ); précédent : 000B08; suivant : 000B10

Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro

Auteurs : S. Lionetto ; A. Little ; G. Moriceau ; D. Heymann ; M. Decurtins ; M. Plecko ; L. Filgueira ; D. Cadosch

Source :

RBID : Pascal:13-0158452

Descripteurs français

English descriptors

Abstract

In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1549-3296
A03   1    @0 J. biomed. mater. res., Part A
A05       @2 101
A06       @2 4
A08 01  1  ENG  @1 Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro
A11 01  1    @1 LIONETTO (S.)
A11 02  1    @1 LITTLE (A.)
A11 03  1    @1 MORICEAU (G.)
A11 04  1    @1 HEYMANN (D.)
A11 05  1    @1 DECURTINS (M.)
A11 06  1    @1 PLECKO (M.)
A11 07  1    @1 FILGUEIRA (L.)
A11 08  1    @1 CADOSCH (D.)
A14 01      @1 Department of Surgery, Spitalregion Fürstenland Toggenburg @3 CHE @Z 1 aut.
A14 02      @1 School of Anatomy and Human Biology, University of Western Australia @3 AUS @Z 2 aut. @Z 7 aut. @Z 8 aut.
A14 03      @1 Physiopathology of Bone Resorption Laboratory, University of Nantes @3 FRA @Z 3 aut. @Z 4 aut.
A14 04      @1 Department of Surgery, Kantonsspital Winterthur @3 CHE @Z 5 aut.
A14 05      @1 Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100 @2 8091 Zurich @3 CHE @Z 6 aut. @Z 8 aut.
A20       @1 991-997
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 13764A @5 354000500656490090
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 13-0158452
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of biomedical materials research. Part A
A66 01      @0 USA
C01 01    ENG  @0 In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.
C02 01  X    @0 002B25M
C02 02  X    @0 001D11E
C02 03  X    @0 002B02L
C02 04  X    @0 240
C03 01  X  FRE  @0 Corrosion @5 07
C03 01  X  ENG  @0 Corrosion @5 07
C03 01  X  GER  @0 Korrosion @5 07
C03 01  X  SPA  @0 Corrosión @5 07
C03 02  X  FRE  @0 Chirurgie @5 08
C03 02  X  ENG  @0 Surgery @5 08
C03 02  X  SPA  @0 Cirugía @5 08
C03 03  X  FRE  @0 Acier inoxydable @5 09
C03 03  X  ENG  @0 Stainless steel @5 09
C03 03  X  GER  @0 Nichtrostender Stahl @5 09
C03 03  X  SPA  @0 Acero inoxidable @5 09
C03 04  X  FRE  @0 In vitro @5 13
C03 04  X  ENG  @0 In vitro @5 13
C03 04  X  SPA  @0 In vitro @5 13
C03 05  X  FRE  @0 Ion métallique @5 14
C03 05  X  ENG  @0 Metal ion @5 14
C03 05  X  SPA  @0 Ión metálico @5 14
C03 06  X  FRE  @0 Ostéoclaste @5 15
C03 06  X  ENG  @0 Osteoclast @5 15
C03 06  X  SPA  @0 Osteoclasto @5 15
C03 07  X  FRE  @0 Bisphosphonates @5 16
C03 07  X  ENG  @0 Bisphosphonates @5 16
C03 07  X  SPA  @0 Bisfosfonatos @5 16
C03 08  X  FRE  @0 Génie biomédical @5 17
C03 08  X  ENG  @0 Biomedical engineering @5 17
C03 08  X  SPA  @0 Ingeniería biomédica @5 17
C03 09  X  FRE  @0 Biomatériau @5 30
C03 09  X  ENG  @0 Biomaterial @5 30
C03 09  X  SPA  @0 Biomaterial @5 30
C03 10  X  FRE  @0 Traitement @5 31
C03 10  X  ENG  @0 Treatment @5 31
C03 10  X  GER  @0 Aufbereiten @5 31
C03 10  X  SPA  @0 Tratamiento @5 31
C07 01  X  FRE  @0 Os @5 37
C07 01  X  ENG  @0 Bone @5 37
C07 01  X  SPA  @0 Hueso @5 37
C07 02  X  FRE  @0 Système ostéoarticulaire @5 38
C07 02  X  ENG  @0 Osteoarticular system @5 38
C07 02  X  SPA  @0 Sistema osteoarticular @5 38
N21       @1 140
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0158452 INIST
ET : Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro
AU : LIONETTO (S.); LITTLE (A.); MORICEAU (G.); HEYMANN (D.); DECURTINS (M.); PLECKO (M.); FILGUEIRA (L.); CADOSCH (D.)
AF : Department of Surgery, Spitalregion Fürstenland Toggenburg/Suisse (1 aut.); School of Anatomy and Human Biology, University of Western Australia/Australie (2 aut., 7 aut., 8 aut.); Physiopathology of Bone Resorption Laboratory, University of Nantes/France (3 aut., 4 aut.); Department of Surgery, Kantonsspital Winterthur/Suisse (5 aut.); Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100/8091 Zurich/Suisse (6 aut., 8 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of biomedical materials research. Part A; ISSN 1549-3296; Etats-Unis; Da. 2013; Vol. 101; No. 4; Pp. 991-997; Bibl. 20 ref.
LA : Anglais
EA : In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfopheni l)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.
CC : 002B25M; 001D11E; 002B02L; 240
FD : Corrosion; Chirurgie; Acier inoxydable; In vitro; Ion métallique; Ostéoclaste; Bisphosphonates; Génie biomédical; Biomatériau; Traitement
FG : Os; Système ostéoarticulaire
ED : Corrosion; Surgery; Stainless steel; In vitro; Metal ion; Osteoclast; Bisphosphonates; Biomedical engineering; Biomaterial; Treatment
EG : Bone; Osteoarticular system
GD : Korrosion; Nichtrostender Stahl; Aufbereiten
SD : Corrosión; Cirugía; Acero inoxidable; In vitro; Ión metálico; Osteoclasto; Bisfosfonatos; Ingeniería biomédica; Biomaterial; Tratamiento
LO : INIST-13764A.354000500656490090
ID : 13-0158452

Links to Exploration step

Pascal:13-0158452

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro</title>
<author>
<name sortKey="Lionetto, S" sort="Lionetto, S" uniqKey="Lionetto S" first="S." last="Lionetto">S. Lionetto</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Surgery, Spitalregion Fürstenland Toggenburg</s1>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Little, A" sort="Little, A" uniqKey="Little A" first="A." last="Little">A. Little</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moriceau, G" sort="Moriceau, G" uniqKey="Moriceau G" first="G." last="Moriceau">G. Moriceau</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physiopathology of Bone Resorption Laboratory, University of Nantes</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Heymann, D" sort="Heymann, D" uniqKey="Heymann D" first="D." last="Heymann">D. Heymann</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physiopathology of Bone Resorption Laboratory, University of Nantes</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Decurtins, M" sort="Decurtins, M" uniqKey="Decurtins M" first="M." last="Decurtins">M. Decurtins</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Surgery, Kantonsspital Winterthur</s1>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Plecko, M" sort="Plecko, M" uniqKey="Plecko M" first="M." last="Plecko">M. Plecko</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100</s1>
<s2>8091 Zurich</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Filgueira, L" sort="Filgueira, L" uniqKey="Filgueira L" first="L." last="Filgueira">L. Filgueira</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100</s1>
<s2>8091 Zurich</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0158452</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0158452 INIST</idno>
<idno type="RBID">Pascal:13-0158452</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro</title>
<author>
<name sortKey="Lionetto, S" sort="Lionetto, S" uniqKey="Lionetto S" first="S." last="Lionetto">S. Lionetto</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Surgery, Spitalregion Fürstenland Toggenburg</s1>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Little, A" sort="Little, A" uniqKey="Little A" first="A." last="Little">A. Little</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moriceau, G" sort="Moriceau, G" uniqKey="Moriceau G" first="G." last="Moriceau">G. Moriceau</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physiopathology of Bone Resorption Laboratory, University of Nantes</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Heymann, D" sort="Heymann, D" uniqKey="Heymann D" first="D." last="Heymann">D. Heymann</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physiopathology of Bone Resorption Laboratory, University of Nantes</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Decurtins, M" sort="Decurtins, M" uniqKey="Decurtins M" first="M." last="Decurtins">M. Decurtins</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Surgery, Kantonsspital Winterthur</s1>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Plecko, M" sort="Plecko, M" uniqKey="Plecko M" first="M." last="Plecko">M. Plecko</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100</s1>
<s2>8091 Zurich</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Filgueira, L" sort="Filgueira, L" uniqKey="Filgueira L" first="L." last="Filgueira">L. Filgueira</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100</s1>
<s2>8091 Zurich</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of biomedical materials research. Part A</title>
<title level="j" type="abbreviated">J. biomed. mater. res., Part A</title>
<idno type="ISSN">1549-3296</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of biomedical materials research. Part A</title>
<title level="j" type="abbreviated">J. biomed. mater. res., Part A</title>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomaterial</term>
<term>Biomedical engineering</term>
<term>Bisphosphonates</term>
<term>Corrosion</term>
<term>In vitro</term>
<term>Metal ion</term>
<term>Osteoclast</term>
<term>Stainless steel</term>
<term>Surgery</term>
<term>Treatment</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Corrosion</term>
<term>Chirurgie</term>
<term>Acier inoxydable</term>
<term>In vitro</term>
<term>Ion métallique</term>
<term>Ostéoclaste</term>
<term>Bisphosphonates</term>
<term>Génie biomédical</term>
<term>Biomatériau</term>
<term>Traitement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1549-3296</s0>
</fA01>
<fA03 i2="1">
<s0>J. biomed. mater. res., Part A</s0>
</fA03>
<fA05>
<s2>101</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIONETTO (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LITTLE (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MORICEAU (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HEYMANN (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DECURTINS (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PLECKO (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FILGUEIRA (L.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CADOSCH (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Surgery, Spitalregion Fürstenland Toggenburg</s1>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Anatomy and Human Biology, University of Western Australia</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Physiopathology of Bone Resorption Laboratory, University of Nantes</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Surgery, Kantonsspital Winterthur</s1>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100</s1>
<s2>8091 Zurich</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>991-997</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13764A</s2>
<s5>354000500656490090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0158452</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of biomedical materials research. Part A</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25M</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D11E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B02L</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Corrosion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Corrosion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Korrosion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Corrosión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Acier inoxydable</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Stainless steel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Nichtrostender Stahl</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Acero inoxidable</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>In vitro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>In vitro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>In vitro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ion métallique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Metal ion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ión metálico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ostéoclaste</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Osteoclast</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Osteoclasto</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bisphosphonates</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Bisphosphonates</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Bisfosfonatos</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Génie biomédical</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Biomedical engineering</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ingeniería biomédica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Biomatériau</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Biomaterial</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Biomaterial</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Traitement</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Treatment</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Aufbereiten</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tratamiento</s0>
<s5>31</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Os</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Bone</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hueso</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Système ostéoarticulaire</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Osteoarticular system</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema osteoarticular</s0>
<s5>38</s5>
</fC07>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0158452 INIST</NO>
<ET>Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro</ET>
<AU>LIONETTO (S.); LITTLE (A.); MORICEAU (G.); HEYMANN (D.); DECURTINS (M.); PLECKO (M.); FILGUEIRA (L.); CADOSCH (D.)</AU>
<AF>Department of Surgery, Spitalregion Fürstenland Toggenburg/Suisse (1 aut.); School of Anatomy and Human Biology, University of Western Australia/Australie (2 aut., 7 aut., 8 aut.); Physiopathology of Bone Resorption Laboratory, University of Nantes/France (3 aut., 4 aut.); Department of Surgery, Kantonsspital Winterthur/Suisse (5 aut.); Clinic of Trauma Surgery, University Hospital Zurich, Ramistrasse 100/8091 Zurich/Suisse (6 aut., 8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of biomedical materials research. Part A; ISSN 1549-3296; Etats-Unis; Da. 2013; Vol. 101; No. 4; Pp. 991-997; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfopheni l)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS.</EA>
<CC>002B25M; 001D11E; 002B02L; 240</CC>
<FD>Corrosion; Chirurgie; Acier inoxydable; In vitro; Ion métallique; Ostéoclaste; Bisphosphonates; Génie biomédical; Biomatériau; Traitement</FD>
<FG>Os; Système ostéoarticulaire</FG>
<ED>Corrosion; Surgery; Stainless steel; In vitro; Metal ion; Osteoclast; Bisphosphonates; Biomedical engineering; Biomaterial; Treatment</ED>
<EG>Bone; Osteoarticular system</EG>
<GD>Korrosion; Nichtrostender Stahl; Aufbereiten</GD>
<SD>Corrosión; Cirugía; Acero inoxidable; In vitro; Ión metálico; Osteoclasto; Bisfosfonatos; Ingeniería biomédica; Biomaterial; Tratamiento</SD>
<LO>INIST-13764A.354000500656490090</LO>
<ID>13-0158452</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000B09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0158452
   |texte=   Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024