Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bending of elastic fibres in viscous flows: the influence of confinement

Identifieur interne : 000A72 ( PascalFrancis/Corpus ); précédent : 000A71; suivant : 000A73

Bending of elastic fibres in viscous flows: the influence of confinement

Auteurs : Jason S. Wexler ; Philippe H. Trinh ; Helene Berthet ; Nawal Quennouz ; Olivia Du Roure ; Herbert E. Huppert ; Anke Linder ; Howard A. Stone

Source :

RBID : Pascal:13-0178261

Descripteurs français

English descriptors

Abstract

We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 720
A08 01  1  ENG  @1 Bending of elastic fibres in viscous flows: the influence of confinement
A11 01  1    @1 WEXLER (Jason S.)
A11 02  1    @1 TRINH (Philippe H.)
A11 03  1    @1 BERTHET (Helene)
A11 04  1    @1 QUENNOUZ (Nawal)
A11 05  1    @1 DU ROURE (Olivia)
A11 06  1    @1 HUPPERT (Herbert E.)
A11 07  1    @1 LINDER (Anke)
A11 08  1    @1 STONE (Howard A.)
A14 01      @1 Department of Mechanical and Aerospace Engineering, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 1 aut. @Z 8 aut.
A14 02      @1 Program in Applied and Computational Mathematics, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 2 aut.
A14 03      @1 PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin @2 75005 Paris @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 04      @1 Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road @2 Cambridge CB3 0WA @3 GBR @Z 6 aut.
A14 05      @1 School of Mathematics, University of New South Wales @2 Kensington, NSW 2052 @3 AUS @Z 6 aut.
A20       @1 517-544
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000503761370190
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 13-0178261
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.
C02 01  3    @0 001B40G85D
C03 01  3  FRE  @0 Microfluidique @5 02
C03 01  3  ENG  @0 Microfluidics @5 02
C03 02  3  FRE  @0 Interaction fluide structure @5 03
C03 02  3  ENG  @0 Fluid-structure interactions @5 03
C03 03  X  FRE  @0 Ecoulement tridimensionnel @5 04
C03 03  X  ENG  @0 Three dimensional flow @5 04
C03 03  X  SPA  @0 Flujo tridimensional @5 04
C03 04  3  FRE  @0 Fluide visqueux @5 06
C03 04  3  ENG  @0 Viscous fluids @5 06
C03 05  3  FRE  @0 Fibre @5 08
C03 05  3  ENG  @0 Fibers @5 08
C03 06  3  FRE  @0 Déformation élastique @5 09
C03 06  3  ENG  @0 Elastic deformation @5 09
C03 07  X  FRE  @0 Cellule Hele Shaw @5 10
C03 07  X  ENG  @0 Hele Shaw cell @5 10
C03 07  X  SPA  @0 Célula Hele Shaw @5 10
C03 08  X  FRE  @0 Conduite rectangulaire @5 11
C03 08  X  ENG  @0 Rectangular pipe @5 11
C03 08  X  SPA  @0 Conducto rectangular @5 11
C03 09  3  FRE  @0 Modélisation @5 15
C03 09  3  ENG  @0 Modelling @5 15
C03 10  3  FRE  @0 Etude expérimentale @5 16
C03 10  3  ENG  @0 Experimental study @5 16
C03 11  3  FRE  @0 Flexion @5 29
C03 11  3  ENG  @0 Bending @5 29
C03 12  3  FRE  @0 Microstructure @5 30
C03 12  3  ENG  @0 Microstructure @5 30
C03 13  X  FRE  @0 Obstacle @5 31
C03 13  X  ENG  @0 Obstacle @5 31
C03 13  X  SPA  @0 Obstáculo @5 31
C03 14  3  FRE  @0 4785N @4 INC @5 56
C03 15  3  FRE  @0 Microcanal @4 CD @5 96
C03 15  3  ENG  @0 Microchannel @4 CD @5 96
N21       @1 161

Format Inist (serveur)

NO : PASCAL 13-0178261 INIST
ET : Bending of elastic fibres in viscous flows: the influence of confinement
AU : WEXLER (Jason S.); TRINH (Philippe H.); BERTHET (Helene); QUENNOUZ (Nawal); DU ROURE (Olivia); HUPPERT (Herbert E.); LINDER (Anke); STONE (Howard A.)
AF : Department of Mechanical and Aerospace Engineering, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 8 aut.); Program in Applied and Computational Mathematics, Princeton University/Princeton, NJ 08544/Etats-Unis (2 aut.); PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin/75005 Paris/France (1 aut., 3 aut., 4 aut., 5 aut., 7 aut.); Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road/Cambridge CB3 0WA/Royaume-Uni (6 aut.); School of Mathematics, University of New South Wales/Kensington, NSW 2052/Australie (6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 720; Pp. 517-544; Bibl. 1 p.1/4
LA : Anglais
EA : We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.
CC : 001B40G85D
FD : Microfluidique; Interaction fluide structure; Ecoulement tridimensionnel; Fluide visqueux; Fibre; Déformation élastique; Cellule Hele Shaw; Conduite rectangulaire; Modélisation; Etude expérimentale; Flexion; Microstructure; Obstacle; 4785N; Microcanal
ED : Microfluidics; Fluid-structure interactions; Three dimensional flow; Viscous fluids; Fibers; Elastic deformation; Hele Shaw cell; Rectangular pipe; Modelling; Experimental study; Bending; Microstructure; Obstacle; Microchannel
SD : Flujo tridimensional; Célula Hele Shaw; Conducto rectangular; Obstáculo
LO : INIST-5180.354000503761370190
ID : 13-0178261

Links to Exploration step

Pascal:13-0178261

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Bending of elastic fibres in viscous flows: the influence of confinement</title>
<author>
<name sortKey="Wexler, Jason S" sort="Wexler, Jason S" uniqKey="Wexler J" first="Jason S." last="Wexler">Jason S. Wexler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Aerospace Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trinh, Philippe H" sort="Trinh, Philippe H" uniqKey="Trinh P" first="Philippe H." last="Trinh">Philippe H. Trinh</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Program in Applied and Computational Mathematics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Berthet, Helene" sort="Berthet, Helene" uniqKey="Berthet H" first="Helene" last="Berthet">Helene Berthet</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Quennouz, Nawal" sort="Quennouz, Nawal" uniqKey="Quennouz N" first="Nawal" last="Quennouz">Nawal Quennouz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Du Roure, Olivia" sort="Du Roure, Olivia" uniqKey="Du Roure O" first="Olivia" last="Du Roure">Olivia Du Roure</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huppert, Herbert E" sort="Huppert, Herbert E" uniqKey="Huppert H" first="Herbert E." last="Huppert">Herbert E. Huppert</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road</s1>
<s2>Cambridge CB3 0WA</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>School of Mathematics, University of New South Wales</s1>
<s2>Kensington, NSW 2052</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Linder, Anke" sort="Linder, Anke" uniqKey="Linder A" first="Anke" last="Linder">Anke Linder</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stone, Howard A" sort="Stone, Howard A" uniqKey="Stone H" first="Howard A." last="Stone">Howard A. Stone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Aerospace Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0178261</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0178261 INIST</idno>
<idno type="RBID">Pascal:13-0178261</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Bending of elastic fibres in viscous flows: the influence of confinement</title>
<author>
<name sortKey="Wexler, Jason S" sort="Wexler, Jason S" uniqKey="Wexler J" first="Jason S." last="Wexler">Jason S. Wexler</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Aerospace Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trinh, Philippe H" sort="Trinh, Philippe H" uniqKey="Trinh P" first="Philippe H." last="Trinh">Philippe H. Trinh</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Program in Applied and Computational Mathematics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Berthet, Helene" sort="Berthet, Helene" uniqKey="Berthet H" first="Helene" last="Berthet">Helene Berthet</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Quennouz, Nawal" sort="Quennouz, Nawal" uniqKey="Quennouz N" first="Nawal" last="Quennouz">Nawal Quennouz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Du Roure, Olivia" sort="Du Roure, Olivia" uniqKey="Du Roure O" first="Olivia" last="Du Roure">Olivia Du Roure</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huppert, Herbert E" sort="Huppert, Herbert E" uniqKey="Huppert H" first="Herbert E." last="Huppert">Herbert E. Huppert</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road</s1>
<s2>Cambridge CB3 0WA</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>School of Mathematics, University of New South Wales</s1>
<s2>Kensington, NSW 2052</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Linder, Anke" sort="Linder, Anke" uniqKey="Linder A" first="Anke" last="Linder">Anke Linder</name>
<affiliation>
<inist:fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stone, Howard A" sort="Stone, Howard A" uniqKey="Stone H" first="Howard A." last="Stone">Howard A. Stone</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Aerospace Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bending</term>
<term>Elastic deformation</term>
<term>Experimental study</term>
<term>Fibers</term>
<term>Fluid-structure interactions</term>
<term>Hele Shaw cell</term>
<term>Microchannel</term>
<term>Microfluidics</term>
<term>Microstructure</term>
<term>Modelling</term>
<term>Obstacle</term>
<term>Rectangular pipe</term>
<term>Three dimensional flow</term>
<term>Viscous fluids</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microfluidique</term>
<term>Interaction fluide structure</term>
<term>Ecoulement tridimensionnel</term>
<term>Fluide visqueux</term>
<term>Fibre</term>
<term>Déformation élastique</term>
<term>Cellule Hele Shaw</term>
<term>Conduite rectangulaire</term>
<term>Modélisation</term>
<term>Etude expérimentale</term>
<term>Flexion</term>
<term>Microstructure</term>
<term>Obstacle</term>
<term>4785N</term>
<term>Microcanal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>720</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Bending of elastic fibres in viscous flows: the influence of confinement</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEXLER (Jason S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TRINH (Philippe H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BERTHET (Helene)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>QUENNOUZ (Nawal)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DU ROURE (Olivia)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HUPPERT (Herbert E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LINDER (Anke)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>STONE (Howard A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical and Aerospace Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Program in Applied and Computational Mathematics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road</s1>
<s2>Cambridge CB3 0WA</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>School of Mathematics, University of New South Wales</s1>
<s2>Kensington, NSW 2052</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>517-544</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000503761370190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0178261</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G85D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Microfluidique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Microfluidics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Interaction fluide structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Fluid-structure interactions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ecoulement tridimensionnel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Three dimensional flow</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Flujo tridimensional</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Fluide visqueux</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Viscous fluids</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Fibre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Fibers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Déformation élastique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Elastic deformation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cellule Hele Shaw</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hele Shaw cell</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Célula Hele Shaw</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Conduite rectangulaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Rectangular pipe</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Conducto rectangular</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Flexion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Bending</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Obstacle</s0>
<s5>31</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Obstacle</s0>
<s5>31</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Obstáculo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>4785N</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Microcanal</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Microchannel</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0178261 INIST</NO>
<ET>Bending of elastic fibres in viscous flows: the influence of confinement</ET>
<AU>WEXLER (Jason S.); TRINH (Philippe H.); BERTHET (Helene); QUENNOUZ (Nawal); DU ROURE (Olivia); HUPPERT (Herbert E.); LINDER (Anke); STONE (Howard A.)</AU>
<AF>Department of Mechanical and Aerospace Engineering, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 8 aut.); Program in Applied and Computational Mathematics, Princeton University/Princeton, NJ 08544/Etats-Unis (2 aut.); PMMH, ESPCI, CNRS UMR 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin/75005 Paris/France (1 aut., 3 aut., 4 aut., 5 aut., 7 aut.); Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road/Cambridge CB3 0WA/Royaume-Uni (6 aut.); School of Mathematics, University of New South Wales/Kensington, NSW 2052/Australie (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 720; Pp. 517-544; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>We present a mathematical model and corresponding series of microfluidic experiments examining the flow of a viscous fluid past an elastic fibre in a three-dimensional channel. The fibre's axis lies perpendicular to the direction of flow and its base is clamped to one wall of the channel; the sidewalls of the channel are close to the fibre, confining the flow. Experiments show that there is a linear relationship between deflection and flow rate for highly confined fibres at low flow rates, which inspires an asymptotic treatment of the problem in this regime. The three-dimensional problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a barrier, with boundary conditions at the barrier that allow for the effects of flexibility and three-dimensional leakage. The analysis yields insight into the competing effects of flexion and leakage, and an analytical solution is derived for the leading-order pressure field corresponding to a slit that partially blocks a two-dimensional channel. The predictions of our model show favourable agreement with experimental results, allowing measurement of the fibre's elasticity and the flow rate in the channel.</EA>
<CC>001B40G85D</CC>
<FD>Microfluidique; Interaction fluide structure; Ecoulement tridimensionnel; Fluide visqueux; Fibre; Déformation élastique; Cellule Hele Shaw; Conduite rectangulaire; Modélisation; Etude expérimentale; Flexion; Microstructure; Obstacle; 4785N; Microcanal</FD>
<ED>Microfluidics; Fluid-structure interactions; Three dimensional flow; Viscous fluids; Fibers; Elastic deformation; Hele Shaw cell; Rectangular pipe; Modelling; Experimental study; Bending; Microstructure; Obstacle; Microchannel</ED>
<SD>Flujo tridimensional; Célula Hele Shaw; Conducto rectangular; Obstáculo</SD>
<LO>INIST-5180.354000503761370190</LO>
<ID>13-0178261</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000A72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0178261
   |texte=   Bending of elastic fibres in viscous flows: the influence of confinement
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024