Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wake states and frequency selection of a streamwise oscillating cylinder

Identifieur interne : 000788 ( PascalFrancis/Corpus ); précédent : 000787; suivant : 000789

Wake states and frequency selection of a streamwise oscillating cylinder

Auteurs : Justin S. Leontini ; David Lo Jacono ; Mark C. Thompson

Source :

RBID : Pascal:13-0322476

Descripteurs français

English descriptors

Abstract

This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding fs and the amplitude of oscillation A* is governed by two primary factors: the first is a reduction of fs proportional to a series in A*2 over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted fs is in the vicinity of N = (1 -fs/fd)-1, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A*2) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When fs is normalized by the Strouhal frequency fSt (the frequency of vortex shedding from an unperturbed cylinder), the rate at which fs/fSt decreases with amplitude, at least for fd/fSt = 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of fs/fSt with amplitude varies as (2 -fd/fSt)-1/2 for 1 ≤fd/fSt ≤ 2, but is essentially independent of fd/fSt for fd/fSt < 1. These trends of the rate of decrease of fs with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying fd/fSt, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where fs = 0.5fd is given. In a similar manner, amplitudes at which fs = 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 730
A08 01  1  ENG  @1 Wake states and frequency selection of a streamwise oscillating cylinder
A11 01  1    @1 LEONTINI (Justin S.)
A11 02  1    @1 LO JACONO (David)
A11 03  1    @1 THOMPSON (Mark C.)
A14 01      @1 Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University @2 Melbourne, VIC 3800 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula @2 31400 Toulouse @3 FRA @Z 2 aut.
A20       @1 162-192
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000501989290080
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 13-0322476
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding fs and the amplitude of oscillation A* is governed by two primary factors: the first is a reduction of fs proportional to a series in A*2 over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted fs is in the vicinity of N = (1 -fs/fd)-1, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A*2) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When fs is normalized by the Strouhal frequency fSt (the frequency of vortex shedding from an unperturbed cylinder), the rate at which fs/fSt decreases with amplitude, at least for fd/fSt = 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of fs/fSt with amplitude varies as (2 -fd/fSt)-1/2 for 1 ≤fd/fSt ≤ 2, but is essentially independent of fd/fSt for fd/fSt < 1. These trends of the rate of decrease of fs with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying fd/fSt, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where fs = 0.5fd is given. In a similar manner, amplitudes at which fs = 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.
C02 01  X    @0 001B40F30M
C02 02  3    @0 001B40G32F
C03 01  X  FRE  @0 Ecoulement tourbillonnaire @5 02
C03 01  X  ENG  @0 Swirling flow @5 02
C03 01  X  SPA  @0 Flujo torbellinal @5 02
C03 02  X  FRE  @0 Détachement tourbillonnaire @5 03
C03 02  X  ENG  @0 Vortex shedding @5 03
C03 02  X  SPA  @0 Desprendimiento vorticial @5 03
C03 03  X  FRE  @0 Interaction fluide structure @5 04
C03 03  X  ENG  @0 Fluid structure interaction @5 04
C03 03  X  SPA  @0 Interacción fluido estructura @5 04
C03 04  X  FRE  @0 Sillage @5 08
C03 04  X  ENG  @0 Wake @5 08
C03 04  X  SPA  @0 Estela (marina) @5 08
C03 05  X  FRE  @0 Cylindre oscillant @5 09
C03 05  X  ENG  @0 Oscillating cylinder @5 09
C03 05  X  SPA  @0 Cilindro oscilante @5 09
C03 06  X  FRE  @0 Modélisation @5 15
C03 06  X  ENG  @0 Modeling @5 15
C03 06  X  SPA  @0 Modelización @5 15
C03 07  X  FRE  @0 Simulation numérique @5 16
C03 07  X  ENG  @0 Numerical simulation @5 16
C03 07  X  SPA  @0 Simulación numérica @5 16
C03 08  X  FRE  @0 Oscillation périodique @5 29
C03 08  X  ENG  @0 Periodic oscillation @5 29
C03 08  X  SPA  @0 Oscilación periódica @5 29
C03 09  X  FRE  @0 4640 @4 INC @5 56
C03 10  X  FRE  @0 4732F @4 INC @5 57
N21       @1 301

Format Inist (serveur)

NO : PASCAL 13-0322476 INIST
ET : Wake states and frequency selection of a streamwise oscillating cylinder
AU : LEONTINI (Justin S.); LO JACONO (David); THOMPSON (Mark C.)
AF : Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, VIC 3800/Australie (1 aut., 2 aut., 3 aut.); Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula/31400 Toulouse/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 730; Pp. 162-192; Bibl. 1 p.3/4
LA : Anglais
EA : This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding fs and the amplitude of oscillation A* is governed by two primary factors: the first is a reduction of fs proportional to a series in A*2 over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted fs is in the vicinity of N = (1 -fs/fd)-1, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A*2) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When fs is normalized by the Strouhal frequency fSt (the frequency of vortex shedding from an unperturbed cylinder), the rate at which fs/fSt decreases with amplitude, at least for fd/fSt = 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of fs/fSt with amplitude varies as (2 -fd/fSt)-1/2 for 1 ≤fd/fSt ≤ 2, but is essentially independent of fd/fSt for fd/fSt < 1. These trends of the rate of decrease of fs with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying fd/fSt, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where fs = 0.5fd is given. In a similar manner, amplitudes at which fs = 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.
CC : 001B40F30M; 001B40G32F
FD : Ecoulement tourbillonnaire; Détachement tourbillonnaire; Interaction fluide structure; Sillage; Cylindre oscillant; Modélisation; Simulation numérique; Oscillation périodique; 4640; 4732F
ED : Swirling flow; Vortex shedding; Fluid structure interaction; Wake; Oscillating cylinder; Modeling; Numerical simulation; Periodic oscillation
SD : Flujo torbellinal; Desprendimiento vorticial; Interacción fluido estructura; Estela (marina); Cilindro oscilante; Modelización; Simulación numérica; Oscilación periódica
LO : INIST-5180.354000501989290080
ID : 13-0322476

Links to Exploration step

Pascal:13-0322476

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Wake states and frequency selection of a streamwise oscillating cylinder</title>
<author>
<name sortKey="Leontini, Justin S" sort="Leontini, Justin S" uniqKey="Leontini J" first="Justin S." last="Leontini">Justin S. Leontini</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, David" sort="Lo Jacono, David" uniqKey="Lo Jacono D" first="David" last="Lo Jacono">David Lo Jacono</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Mark C" sort="Thompson, Mark C" uniqKey="Thompson M" first="Mark C." last="Thompson">Mark C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0322476</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0322476 INIST</idno>
<idno type="RBID">Pascal:13-0322476</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000788</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Wake states and frequency selection of a streamwise oscillating cylinder</title>
<author>
<name sortKey="Leontini, Justin S" sort="Leontini, Justin S" uniqKey="Leontini J" first="Justin S." last="Leontini">Justin S. Leontini</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, David" sort="Lo Jacono, David" uniqKey="Lo Jacono D" first="David" last="Lo Jacono">David Lo Jacono</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Mark C" sort="Thompson, Mark C" uniqKey="Thompson M" first="Mark C." last="Thompson">Mark C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fluid structure interaction</term>
<term>Modeling</term>
<term>Numerical simulation</term>
<term>Oscillating cylinder</term>
<term>Periodic oscillation</term>
<term>Swirling flow</term>
<term>Vortex shedding</term>
<term>Wake</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement tourbillonnaire</term>
<term>Détachement tourbillonnaire</term>
<term>Interaction fluide structure</term>
<term>Sillage</term>
<term>Cylindre oscillant</term>
<term>Modélisation</term>
<term>Simulation numérique</term>
<term>Oscillation périodique</term>
<term>4640</term>
<term>4732F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding f
<sub>s</sub>
and the amplitude of oscillation A
<sup>*</sup>
is governed by two primary factors: the first is a reduction of f
<sub>s </sub>
proportional to a series in A
<sup>*2</sup>
over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted f
<sub>s</sub>
is in the vicinity of N = (1 -f
<sub>s</sub>
/f
<sub>d</sub>
)
<sup>-1</sup>
, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A
<sup>*2</sup>
) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When f
<sub>s</sub>
is normalized by the Strouhal frequency f
<sub>St</sub>
(the frequency of vortex shedding from an unperturbed cylinder), the rate at which f
<sub>s</sub>
/f
<sub>St</sub>
decreases with amplitude, at least for f
<sub>d</sub>
/f
<sub>St</sub>
= 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of f
<sub>s</sub>
/f
<sub>St</sub>
with amplitude varies as (2 -f
<sub>d</sub>
/f
<sub>St</sub>
)
<sup>-1/2</sup>
for 1 ≤f
<sub>d</sub>
/f
<sub>St</sub>
≤ 2, but is essentially independent of f
<sub>d</sub>
/f
<sub>St</sub>
for f
<sub>d</sub>
/f
<sub>St</sub>
< 1. These trends of the rate of decrease of f
<sub>s</sub>
with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying f
<sub>d</sub>
/f
<sub>St</sub>
, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where f
<sub>s</sub>
= 0.5f
<sub>d</sub>
is given. In a similar manner, amplitudes at which f
<sub>s</sub>
= 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>730</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Wake states and frequency selection of a streamwise oscillating cylinder</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEONTINI (Justin S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LO JACONO (David)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>THOMPSON (Mark C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>162-192</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000501989290080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0322476</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding f
<sub>s</sub>
and the amplitude of oscillation A
<sup>*</sup>
is governed by two primary factors: the first is a reduction of f
<sub>s </sub>
proportional to a series in A
<sup>*2</sup>
over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted f
<sub>s</sub>
is in the vicinity of N = (1 -f
<sub>s</sub>
/f
<sub>d</sub>
)
<sup>-1</sup>
, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A
<sup>*2</sup>
) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When f
<sub>s</sub>
is normalized by the Strouhal frequency f
<sub>St</sub>
(the frequency of vortex shedding from an unperturbed cylinder), the rate at which f
<sub>s</sub>
/f
<sub>St</sub>
decreases with amplitude, at least for f
<sub>d</sub>
/f
<sub>St</sub>
= 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of f
<sub>s</sub>
/f
<sub>St</sub>
with amplitude varies as (2 -f
<sub>d</sub>
/f
<sub>St</sub>
)
<sup>-1/2</sup>
for 1 ≤f
<sub>d</sub>
/f
<sub>St</sub>
≤ 2, but is essentially independent of f
<sub>d</sub>
/f
<sub>St</sub>
for f
<sub>d</sub>
/f
<sub>St</sub>
< 1. These trends of the rate of decrease of f
<sub>s</sub>
with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying f
<sub>d</sub>
/f
<sub>St</sub>
, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where f
<sub>s</sub>
= 0.5f
<sub>d</sub>
is given. In a similar manner, amplitudes at which f
<sub>s</sub>
= 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001B40F30M</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G32F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Swirling flow</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Flujo torbellinal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interaction fluide structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Fluid structure interaction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interacción fluido estructura</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sillage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Wake</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estela (marina)</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cylindre oscillant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oscillating cylinder</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cilindro oscilante</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oscillation périodique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Periodic oscillation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Oscilación periódica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>4640</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>4732F</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>301</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0322476 INIST</NO>
<ET>Wake states and frequency selection of a streamwise oscillating cylinder</ET>
<AU>LEONTINI (Justin S.); LO JACONO (David); THOMPSON (Mark C.)</AU>
<AF>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, VIC 3800/Australie (1 aut., 2 aut., 3 aut.); Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula/31400 Toulouse/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2013; Vol. 730; Pp. 162-192; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding f
<sub>s</sub>
and the amplitude of oscillation A
<sup>*</sup>
is governed by two primary factors: the first is a reduction of f
<sub>s </sub>
proportional to a series in A
<sup>*2</sup>
over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted f
<sub>s</sub>
is in the vicinity of N = (1 -f
<sub>s</sub>
/f
<sub>d</sub>
)
<sup>-1</sup>
, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A
<sup>*2</sup>
) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When f
<sub>s</sub>
is normalized by the Strouhal frequency f
<sub>St</sub>
(the frequency of vortex shedding from an unperturbed cylinder), the rate at which f
<sub>s</sub>
/f
<sub>St</sub>
decreases with amplitude, at least for f
<sub>d</sub>
/f
<sub>St</sub>
= 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of f
<sub>s</sub>
/f
<sub>St</sub>
with amplitude varies as (2 -f
<sub>d</sub>
/f
<sub>St</sub>
)
<sup>-1/2</sup>
for 1 ≤f
<sub>d</sub>
/f
<sub>St</sub>
≤ 2, but is essentially independent of f
<sub>d</sub>
/f
<sub>St</sub>
for f
<sub>d</sub>
/f
<sub>St</sub>
< 1. These trends of the rate of decrease of f
<sub>s</sub>
with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying f
<sub>d</sub>
/f
<sub>St</sub>
, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where f
<sub>s</sub>
= 0.5f
<sub>d</sub>
is given. In a similar manner, amplitudes at which f
<sub>s</sub>
= 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing.</EA>
<CC>001B40F30M; 001B40G32F</CC>
<FD>Ecoulement tourbillonnaire; Détachement tourbillonnaire; Interaction fluide structure; Sillage; Cylindre oscillant; Modélisation; Simulation numérique; Oscillation périodique; 4640; 4732F</FD>
<ED>Swirling flow; Vortex shedding; Fluid structure interaction; Wake; Oscillating cylinder; Modeling; Numerical simulation; Periodic oscillation</ED>
<SD>Flujo torbellinal; Desprendimiento vorticial; Interacción fluido estructura; Estela (marina); Cilindro oscilante; Modelización; Simulación numérica; Oscilación periódica</SD>
<LO>INIST-5180.354000501989290080</LO>
<ID>13-0322476</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000788 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000788 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0322476
   |texte=   Wake states and frequency selection of a streamwise oscillating cylinder
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024