Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing drought stress and trait influence on maize yield under current and future conditions

Identifieur interne : 000531 ( PascalFrancis/Corpus ); précédent : 000530; suivant : 000532

Characterizing drought stress and trait influence on maize yield under current and future conditions

Auteurs : Matthew T. Harrison ; François Tardieu ; ZHANSHAN DONG ; Carlos D. Messina ; Graeme L. Hammer

Source :

RBID : Pascal:14-0063411

Descripteurs français

English descriptors

Abstract

Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1354-1013
A03   1    @0 Glob. chang. biol. : (Print)
A05       @2 20
A06       @2 3
A08 01  1  ENG  @1 Characterizing drought stress and trait influence on maize yield under current and future conditions
A11 01  1    @1 HARRISON (Matthew T.)
A11 02  1    @1 TARDIEU (François)
A11 03  1    @1 ZHANSHAN DONG
A11 04  1    @1 MESSINA (Carlos D.)
A11 05  1    @1 HAMMER (Graeme L.)
A14 01      @1 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala @2 Montpellier 34060 @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland @2 Brisbane, QLD 4072 @3 AUS @Z 1 aut. @Z 5 aut.
A14 03      @1 Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue @2 Johnston, IA 50131 @3 USA @Z 3 aut. @Z 4 aut.
A20       @1 867-878
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 27882 @5 354000505756960160
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 14-0063411
A60       @1 P
A61       @0 A
A64 01  1    @0 Global change biology : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.
C02 01  X    @0 002A14B01
C03 01  X  FRE  @0 Stress hydrique @5 01
C03 01  X  ENG  @0 Water stress @5 01
C03 01  X  SPA  @0 Estrés hídrico @5 01
C03 02  X  FRE  @0 Rendement @5 02
C03 02  X  ENG  @0 Yield @5 02
C03 02  X  SPA  @0 Rendimiento @5 02
C03 03  X  FRE  @0 Reproduction @5 03
C03 03  X  ENG  @0 Reproduction @5 03
C03 03  X  SPA  @0 Reproducción @5 03
C03 04  X  FRE  @0 Sécheresse @5 04
C03 04  X  ENG  @0 Drought @5 04
C03 04  X  SPA  @0 Sequedad @5 04
C03 05  X  FRE  @0 Grain @5 05
C03 05  X  ENG  @0 Grains @5 05
C03 05  X  SPA  @0 Grano @5 05
C03 06  X  FRE  @0 Modèle @5 06
C03 06  X  ENG  @0 Models @5 06
C03 06  X  SPA  @0 Modelo @5 06
C03 07  X  FRE  @0 Zea mays @2 NS @5 55
C03 07  X  ENG  @0 Zea mays @2 NS @5 55
C03 07  X  SPA  @0 Zea mays @2 NS @5 55
C07 01  X  FRE  @0 Facteur milieu @5 26
C07 01  X  ENG  @0 Environmental factor @5 26
C07 01  X  SPA  @0 Factor medio @5 26
C07 02  X  FRE  @0 Gramineae @2 NS
C07 02  X  ENG  @0 Gramineae @2 NS
C07 02  X  SPA  @0 Gramineae @2 NS
C07 03  X  FRE  @0 Monocotyledones @2 NS
C07 03  X  ENG  @0 Monocotyledones @2 NS
C07 03  X  SPA  @0 Monocotyledones @2 NS
C07 04  X  FRE  @0 Angiospermae @2 NS
C07 04  X  ENG  @0 Angiospermae @2 NS
C07 04  X  SPA  @0 Angiospermae @2 NS
C07 05  X  FRE  @0 Spermatophyta @2 NS
C07 05  X  ENG  @0 Spermatophyta @2 NS
C07 05  X  SPA  @0 Spermatophyta @2 NS
N21       @1 090
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0063411 INIST
ET : Characterizing drought stress and trait influence on maize yield under current and future conditions
AU : HARRISON (Matthew T.); TARDIEU (François); ZHANSHAN DONG; MESSINA (Carlos D.); HAMMER (Graeme L.)
AF : Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala/Montpellier 34060/France (1 aut., 2 aut.); Queensland Alliance for Agriculture and Food Innovation, The University of Queensland/Brisbane, QLD 4072/Australie (1 aut., 5 aut.); Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue/Johnston, IA 50131/Etats-Unis (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Global change biology : (Print); ISSN 1354-1013; Royaume-Uni; Da. 2014; Vol. 20; No. 3; Pp. 867-878; Bibl. 3/4 p.
LA : Anglais
EA : Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.
CC : 002A14B01
FD : Stress hydrique; Rendement; Reproduction; Sécheresse; Grain; Modèle; Zea mays
FG : Facteur milieu; Gramineae; Monocotyledones; Angiospermae; Spermatophyta
ED : Water stress; Yield; Reproduction; Drought; Grains; Models; Zea mays
EG : Environmental factor; Gramineae; Monocotyledones; Angiospermae; Spermatophyta
SD : Estrés hídrico; Rendimiento; Reproducción; Sequedad; Grano; Modelo; Zea mays
LO : INIST-27882.354000505756960160
ID : 14-0063411

Links to Exploration step

Pascal:14-0063411

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala</s1>
<s2>Montpellier 34060</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala</s1>
<s2>Montpellier 34060</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhanshan Dong" sort="Zhanshan Dong" uniqKey="Zhanshan Dong" last="Zhanshan Dong">ZHANSHAN DONG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue</s1>
<s2>Johnston, IA 50131</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue</s1>
<s2>Johnston, IA 50131</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0063411</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0063411 INIST</idno>
<idno type="RBID">Pascal:14-0063411</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000531</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala</s1>
<s2>Montpellier 34060</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala</s1>
<s2>Montpellier 34060</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhanshan Dong" sort="Zhanshan Dong" uniqKey="Zhanshan Dong" last="Zhanshan Dong">ZHANSHAN DONG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue</s1>
<s2>Johnston, IA 50131</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue</s1>
<s2>Johnston, IA 50131</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Global change biology : (Print)</title>
<title level="j" type="abbreviated">Glob. chang. biol. : (Print)</title>
<idno type="ISSN">1354-1013</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Global change biology : (Print)</title>
<title level="j" type="abbreviated">Glob. chang. biol. : (Print)</title>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Drought</term>
<term>Grains</term>
<term>Models</term>
<term>Reproduction</term>
<term>Water stress</term>
<term>Yield</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Stress hydrique</term>
<term>Rendement</term>
<term>Reproduction</term>
<term>Sécheresse</term>
<term>Grain</term>
<term>Modèle</term>
<term>Zea mays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO
<sub>2</sub>
on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1354-1013</s0>
</fA01>
<fA03 i2="1">
<s0>Glob. chang. biol. : (Print)</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterizing drought stress and trait influence on maize yield under current and future conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HARRISON (Matthew T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TARDIEU (François)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHANSHAN DONG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MESSINA (Carlos D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAMMER (Graeme L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala</s1>
<s2>Montpellier 34060</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland</s1>
<s2>Brisbane, QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue</s1>
<s2>Johnston, IA 50131</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>867-878</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27882</s2>
<s5>354000505756960160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0063411</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Global change biology : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO
<sub>2</sub>
on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Stress hydrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Water stress</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estrés hídrico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rendement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Yield</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Reproduction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Reproduction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Reproducción</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sécheresse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Drought</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sequedad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Grain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Grains</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Grano</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Zea mays</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Zea mays</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Zea mays</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Environmental factor</s0>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Factor medio</s0>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>090</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0063411 INIST</NO>
<ET>Characterizing drought stress and trait influence on maize yield under current and future conditions</ET>
<AU>HARRISON (Matthew T.); TARDIEU (François); ZHANSHAN DONG; MESSINA (Carlos D.); HAMMER (Graeme L.)</AU>
<AF>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala/Montpellier 34060/France (1 aut., 2 aut.); Queensland Alliance for Agriculture and Food Innovation, The University of Queensland/Brisbane, QLD 4072/Australie (1 aut., 5 aut.); Pioneer Hi-Bred International, A DuPont Business, 7250 NW 62nd Avenue/Johnston, IA 50131/Etats-Unis (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Global change biology : (Print); ISSN 1354-1013; Royaume-Uni; Da. 2014; Vol. 20; No. 3; Pp. 867-878; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO
<sub>2</sub>
on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</EA>
<CC>002A14B01</CC>
<FD>Stress hydrique; Rendement; Reproduction; Sécheresse; Grain; Modèle; Zea mays</FD>
<FG>Facteur milieu; Gramineae; Monocotyledones; Angiospermae; Spermatophyta</FG>
<ED>Water stress; Yield; Reproduction; Drought; Grains; Models; Zea mays</ED>
<EG>Environmental factor; Gramineae; Monocotyledones; Angiospermae; Spermatophyta</EG>
<SD>Estrés hídrico; Rendimiento; Reproducción; Sequedad; Grano; Modelo; Zea mays</SD>
<LO>INIST-27882.354000505756960160</LO>
<ID>14-0063411</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0063411
   |texte=   Characterizing drought stress and trait influence on maize yield under current and future conditions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024