Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders

Identifieur interne : 000104 ( PascalFrancis/Corpus ); précédent : 000103; suivant : 000105

Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders

Auteurs : Dina V. Dudina ; Igor S. Batraev ; Vladimir Yu. Ulianitsky ; Natalia V. Bulina ; Michail A. Korchagin ; Ivan A. Bataev ; Alberto Moreira Jr Jorge

Source :

RBID : Pascal:15-0019428

Descripteurs français

English descriptors

Abstract

In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti3SiC2-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti3SiC2-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti3SiC2 and Cu occurs. The TiCx-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1059-9630
A03   1    @0 J. therm. spray technol.
A05       @2 23
A06       @2 7
A08 01  1  ENG  @1 Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders
A09 01  1  ENG  @1 Development and Applications of Nanocomposite Coatings
A11 01  1    @1 DUDINA (Dina V.)
A11 02  1    @1 BATRAEV (Igor S.)
A11 03  1    @1 ULIANITSKY (Vladimir Yu.)
A11 04  1    @1 BULINA (Natalia V.)
A11 05  1    @1 KORCHAGIN (Michail A.)
A11 06  1    @1 BATAEV (Ivan A.)
A11 07  1    @1 JORGE (Alberto Moreira JR)
A12 01  1    @1 AHMED (Rehan) @9 ed.
A12 02  1    @1 BERNDT (Christopher C.) @9 ed.
A14 01      @1 Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18 @2 Novosibirsk 630128 @3 RUS @Z 1 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15 @2 Novosibirsk 630090 @3 RUS @Z 2 aut. @Z 3 aut.
A14 03      @1 Novosibirsk State Technical University, K. Marx Ave, 20 @2 Novosibirsk 630073 @3 RUS @Z 6 aut.
A14 04      @1 Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235 @2 São Carlos, SP 13565-905 @3 BRA @Z 7 aut.
A14 05      @1 Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus @2 38402 Saint-Martin d'Heres @3 FRA @Z 7 aut.
A15 01      @1 Watt University @3 GBR @Z 1 aut.
A15 02      @1 Swinburne University of Technology @3 AUS @Z 2 aut.
A20       @1 1116-1123
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 26297 @5 354000502630870100
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 15-0019428
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of thermal spray technology
A66 01      @0 DEU
C01 01    ENG  @0 In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti3SiC2-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti3SiC2-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti3SiC2 and Cu occurs. The TiCx-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.
C02 01  X    @0 001D11C06
C02 02  X    @0 240
C03 01  X  FRE  @0 Nanocomposite @5 55
C03 01  X  ENG  @0 Nanocomposite @5 55
C03 01  X  SPA  @0 Nanocompuesto @5 55
C03 02  X  FRE  @0 Revêtement composite @5 56
C03 02  X  ENG  @0 Composite coating @5 56
C03 02  X  SPA  @0 Revestimiento compuesto @5 56
C03 03  X  FRE  @0 Projection détonation @5 57
C03 03  X  ENG  @0 Detonation spraying @5 57
C03 03  X  GER  @0 Flammschockspritzen @5 57
C03 03  X  SPA  @0 Proyección detonación @5 57
C03 04  X  FRE  @0 Matériau composite @5 58
C03 04  X  ENG  @0 Composite material @5 58
C03 04  X  GER  @0 Verbundwerkstoff @5 58
C03 04  X  SPA  @0 Material compuesto @5 58
C03 05  X  FRE  @0 Nanostructure @5 59
C03 05  X  ENG  @0 Nanostructure @5 59
C03 05  X  SPA  @0 Nanoestructura @5 59
C03 06  X  FRE  @0 Carbure de titane @5 60
C03 06  X  ENG  @0 Titanium carbide @5 60
C03 06  X  GER  @0 Titancarbid @5 60
C03 06  X  SPA  @0 Titanio carburo @5 60
C03 07  X  FRE  @0 Carbure de silicium @5 61
C03 07  X  ENG  @0 Silicon carbide @5 61
C03 07  X  GER  @0 Siliciumcarbid @5 61
C03 07  X  SPA  @0 Silicio carburo @5 61
C03 08  X  FRE  @0 Traitement surface @5 62
C03 08  X  ENG  @0 Surface treatment @5 62
C03 08  X  GER  @0 Oberflaechenbehandlung @5 62
C03 08  X  SPA  @0 Tratamiento superficie @5 62
N21       @1 026
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 15-0019428 INIST
ET : Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders
AU : DUDINA (Dina V.); BATRAEV (Igor S.); ULIANITSKY (Vladimir Yu.); BULINA (Natalia V.); KORCHAGIN (Michail A.); BATAEV (Ivan A.); JORGE (Alberto Moreira JR); AHMED (Rehan); BERNDT (Christopher C.)
AF : Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18/Novosibirsk 630128/Russie (1 aut., 4 aut., 5 aut.); Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15/Novosibirsk 630090/Russie (2 aut., 3 aut.); Novosibirsk State Technical University, K. Marx Ave, 20/Novosibirsk 630073/Russie (6 aut.); Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235/São Carlos, SP 13565-905/Brésil (7 aut.); Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus/38402 Saint-Martin d'Heres/France (7 aut.); Watt University/Royaume-Uni (1 aut.); Swinburne University of Technology/Australie (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of thermal spray technology; ISSN 1059-9630; Allemagne; Da. 2014; Vol. 23; No. 7; Pp. 1116-1123; Bibl. 17 ref.
LA : Anglais
EA : In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti3SiC2-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti3SiC2-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti3SiC2 and Cu occurs. The TiCx-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.
CC : 001D11C06; 240
FD : Nanocomposite; Revêtement composite; Projection détonation; Matériau composite; Nanostructure; Carbure de titane; Carbure de silicium; Traitement surface
ED : Nanocomposite; Composite coating; Detonation spraying; Composite material; Nanostructure; Titanium carbide; Silicon carbide; Surface treatment
GD : Flammschockspritzen; Verbundwerkstoff; Titancarbid; Siliciumcarbid; Oberflaechenbehandlung
SD : Nanocompuesto; Revestimiento compuesto; Proyección detonación; Material compuesto; Nanoestructura; Titanio carburo; Silicio carburo; Tratamiento superficie
LO : INIST-26297.354000502630870100
ID : 15-0019428

Links to Exploration step

Pascal:15-0019428

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu Powders</title>
<author>
<name sortKey="Dudina, Dina V" sort="Dudina, Dina V" uniqKey="Dudina D" first="Dina V." last="Dudina">Dina V. Dudina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Batraev, Igor S" sort="Batraev, Igor S" uniqKey="Batraev I" first="Igor S." last="Batraev">Igor S. Batraev</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ulianitsky, Vladimir Yu" sort="Ulianitsky, Vladimir Yu" uniqKey="Ulianitsky V" first="Vladimir Yu." last="Ulianitsky">Vladimir Yu. Ulianitsky</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bulina, Natalia V" sort="Bulina, Natalia V" uniqKey="Bulina N" first="Natalia V." last="Bulina">Natalia V. Bulina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Korchagin, Michail A" sort="Korchagin, Michail A" uniqKey="Korchagin M" first="Michail A." last="Korchagin">Michail A. Korchagin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bataev, Ivan A" sort="Bataev, Ivan A" uniqKey="Bataev I" first="Ivan A." last="Bataev">Ivan A. Bataev</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Novosibirsk State Technical University, K. Marx Ave, 20</s1>
<s2>Novosibirsk 630073</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jorge, Alberto Moreira Jr" sort="Jorge, Alberto Moreira Jr" uniqKey="Jorge A" first="Alberto Moreira Jr" last="Jorge">Alberto Moreira Jr Jorge</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235</s1>
<s2>São Carlos, SP 13565-905</s2>
<s3>BRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus</s1>
<s2>38402 Saint-Martin d'Heres</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0019428</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0019428 INIST</idno>
<idno type="RBID">Pascal:15-0019428</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000104</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu Powders</title>
<author>
<name sortKey="Dudina, Dina V" sort="Dudina, Dina V" uniqKey="Dudina D" first="Dina V." last="Dudina">Dina V. Dudina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Batraev, Igor S" sort="Batraev, Igor S" uniqKey="Batraev I" first="Igor S." last="Batraev">Igor S. Batraev</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ulianitsky, Vladimir Yu" sort="Ulianitsky, Vladimir Yu" uniqKey="Ulianitsky V" first="Vladimir Yu." last="Ulianitsky">Vladimir Yu. Ulianitsky</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bulina, Natalia V" sort="Bulina, Natalia V" uniqKey="Bulina N" first="Natalia V." last="Bulina">Natalia V. Bulina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Korchagin, Michail A" sort="Korchagin, Michail A" uniqKey="Korchagin M" first="Michail A." last="Korchagin">Michail A. Korchagin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bataev, Ivan A" sort="Bataev, Ivan A" uniqKey="Bataev I" first="Ivan A." last="Bataev">Ivan A. Bataev</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Novosibirsk State Technical University, K. Marx Ave, 20</s1>
<s2>Novosibirsk 630073</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jorge, Alberto Moreira Jr" sort="Jorge, Alberto Moreira Jr" uniqKey="Jorge A" first="Alberto Moreira Jr" last="Jorge">Alberto Moreira Jr Jorge</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235</s1>
<s2>São Carlos, SP 13565-905</s2>
<s3>BRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus</s1>
<s2>38402 Saint-Martin d'Heres</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of thermal spray technology</title>
<title level="j" type="abbreviated">J. therm. spray technol.</title>
<idno type="ISSN">1059-9630</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of thermal spray technology</title>
<title level="j" type="abbreviated">J. therm. spray technol.</title>
<idno type="ISSN">1059-9630</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Composite coating</term>
<term>Composite material</term>
<term>Detonation spraying</term>
<term>Nanocomposite</term>
<term>Nanostructure</term>
<term>Silicon carbide</term>
<term>Surface treatment</term>
<term>Titanium carbide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanocomposite</term>
<term>Revêtement composite</term>
<term>Projection détonation</term>
<term>Matériau composite</term>
<term>Nanostructure</term>
<term>Carbure de titane</term>
<term>Carbure de silicium</term>
<term>Traitement surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti
<sub>3</sub>
SiC
<sub>2</sub>
and Cu occurs. The TiC
<sub>x</sub>
-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1059-9630</s0>
</fA01>
<fA03 i2="1">
<s0>J. therm. spray technol.</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu Powders</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Development and Applications of Nanocomposite Coatings</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DUDINA (Dina V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BATRAEV (Igor S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ULIANITSKY (Vladimir Yu.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BULINA (Natalia V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KORCHAGIN (Michail A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BATAEV (Ivan A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JORGE (Alberto Moreira JR)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AHMED (Rehan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BERNDT (Christopher C.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18</s1>
<s2>Novosibirsk 630128</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Novosibirsk State Technical University, K. Marx Ave, 20</s1>
<s2>Novosibirsk 630073</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235</s1>
<s2>São Carlos, SP 13565-905</s2>
<s3>BRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus</s1>
<s2>38402 Saint-Martin d'Heres</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Watt University</s1>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Swinburne University of Technology</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1116-1123</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26297</s2>
<s5>354000502630870100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0019428</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of thermal spray technology</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti
<sub>3</sub>
SiC
<sub>2</sub>
and Cu occurs. The TiC
<sub>x</sub>
-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11C06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>55</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>55</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>55</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Revêtement composite</s0>
<s5>56</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Composite coating</s0>
<s5>56</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Revestimiento compuesto</s0>
<s5>56</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Projection détonation</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Detonation spraying</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Flammschockspritzen</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Proyección detonación</s0>
<s5>57</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>58</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>58</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Verbundwerkstoff</s0>
<s5>58</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>58</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>59</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>59</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>59</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carbure de titane</s0>
<s5>60</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Titanium carbide</s0>
<s5>60</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Titancarbid</s0>
<s5>60</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Titanio carburo</s0>
<s5>60</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Carbure de silicium</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Silicon carbide</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Siliciumcarbid</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Silicio carburo</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traitement surface</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surface treatment</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="X" l="GER">
<s0>Oberflaechenbehandlung</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tratamiento superficie</s0>
<s5>62</s5>
</fC03>
<fN21>
<s1>026</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 15-0019428 INIST</NO>
<ET>Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu Powders</ET>
<AU>DUDINA (Dina V.); BATRAEV (Igor S.); ULIANITSKY (Vladimir Yu.); BULINA (Natalia V.); KORCHAGIN (Michail A.); BATAEV (Ivan A.); JORGE (Alberto Moreira JR); AHMED (Rehan); BERNDT (Christopher C.)</AU>
<AF>Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str., 18/Novosibirsk 630128/Russie (1 aut., 4 aut., 5 aut.); Lavrentiev Institute of Hydrodynamics SB RAS, Lavrentiev Ave., 15/Novosibirsk 630090/Russie (2 aut., 3 aut.); Novosibirsk State Technical University, K. Marx Ave, 20/Novosibirsk 630073/Russie (6 aut.); Department of Materials Science and Engineering, Federal University of São Carlos, Via Washington Luiz, km 235/São Carlos, SP 13565-905/Brésil (7 aut.); Institut Polytechnique de Grenoble (INPG), 1130 rue de la Piscine, Saint-Martin d'Heres Campus/38402 Saint-Martin d'Heres/France (7 aut.); Watt University/Royaume-Uni (1 aut.); Swinburne University of Technology/Australie (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of thermal spray technology; ISSN 1059-9630; Allemagne; Da. 2014; Vol. 23; No. 7; Pp. 1116-1123; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti
<sub>3</sub>
SiC
<sub>2</sub>
-Cu coating is inherited from the feedstock powder-under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti
<sub>3</sub>
SiC
<sub>2</sub>
and Cu occurs. The TiC
<sub>x</sub>
-Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.</EA>
<CC>001D11C06; 240</CC>
<FD>Nanocomposite; Revêtement composite; Projection détonation; Matériau composite; Nanostructure; Carbure de titane; Carbure de silicium; Traitement surface</FD>
<ED>Nanocomposite; Composite coating; Detonation spraying; Composite material; Nanostructure; Titanium carbide; Silicon carbide; Surface treatment</ED>
<GD>Flammschockspritzen; Verbundwerkstoff; Titancarbid; Siliciumcarbid; Oberflaechenbehandlung</GD>
<SD>Nanocompuesto; Revestimiento compuesto; Proyección detonación; Material compuesto; Nanoestructura; Titanio carburo; Silicio carburo; Tratamiento superficie</SD>
<LO>INIST-26297.354000502630870100</LO>
<ID>15-0019428</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000104 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000104 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:15-0019428
   |texte=   Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024