Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Shear heating in granular layers

Identifieur interne : 005B16 ( PascalFrancis/Checkpoint ); précédent : 005B15; suivant : 005B17

Shear heating in granular layers

Auteurs : Karen Mair [États-Unis] ; Chris Marone [États-Unis]

Source :

RBID : Pascal:01-0109999

Descripteurs français

English descriptors

Abstract

Heat-flow measurements imply that the San Andreas Fault operates at lower shear stresses than generally predicted from laboratory friction data. This suggests that a dramatic weakening effect or reduced heat production occur during dynamic slip. Numerical studies intimate that grain rolling or localization may cause weakening or reduced heating, however laboratory evidence for these effects are sparse. We directly measure frictional resistance (μ), shear heating and microstructural evolution with accumulated strain in layers of quartz powder sheared at a range of effective stresses (σn = 5-70 MPa) and sliding velocities (V = 0.01-10 mm/s). Tests conducted at σn ≥ 25 MPa show strong evidence for shear localization due to intense grain fracture. In contrast, tests conducted at low effective stress (σn = 5 MPa) show no preferential fabric development and minimal grain fracture hence we conclude that non-destructive processes such as grain rolling/sliding, distributed throughout the layer, dominate deformation. Temperature measured close to the fault increases systematically with σn and V, consistent with a one-dimensional heat-flow solution for frictional heating in a finite width layer. Mechanical results indicate stable sliding (μ ∼0.6) for all tests, irrespective of deformation regime and show no evidence for reduced frictional resistance at rapid slip or high effective stresses. Our measurements verify that the heat production equation (q = μσnV) holds regardless of localization state Or fracture regime. Thus, for quasistatic velocities (V ≤ 10 mm/s) and effective stresses relevant to earthquake rupture, neither grain rolling/sliding or shear localization appear to be a viable mechanism for the dramatic weakening or reduced heating required to explain the heat flow paradox.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0109999

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Shear heating in granular layers</title>
<author>
<name sortKey="Mair, Karen" sort="Mair, Karen" uniqKey="Mair K" first="Karen" last="Mair">Karen Mair</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marone, Chris" sort="Marone, Chris" uniqKey="Marone C" first="Chris" last="Marone">Chris Marone</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0109999</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0109999 INIST</idno>
<idno type="RBID">Pascal:01-0109999</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005D04</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000453</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">005B16</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">005B16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Shear heating in granular layers</title>
<author>
<name sortKey="Mair, Karen" sort="Mair, Karen" uniqKey="Mair K" first="Karen" last="Mair">Karen Mair</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marone, Chris" sort="Marone, Chris" uniqKey="Marone C" first="Chris" last="Marone">Chris Marone</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Pure and Applied Geophysics</title>
<title level="j" type="abbreviated">Pure Appl. Geophys.</title>
<idno type="ISSN">0033-4553</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Pure and Applied Geophysics</title>
<title level="j" type="abbreviated">Pure Appl. Geophys.</title>
<idno type="ISSN">0033-4553</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Q</term>
<term>SEM data</term>
<term>San Andreas Fault</term>
<term>deformation</term>
<term>fabric</term>
<term>fault gouge</term>
<term>fracturing</term>
<term>friction</term>
<term>heat flow</term>
<term>heat production</term>
<term>microstructures</term>
<term>quartz</term>
<term>rupture</term>
<term>scanning electron microscopy</term>
<term>shear</term>
<term>shear stress</term>
<term>slip</term>
<term>temperature</term>
<term>velocity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Faille San Andreas</term>
<term>Argile faille</term>
<term>Flux géothermique</term>
<term>Cisaillement</term>
<term>Frottement</term>
<term>Production chaleur</term>
<term>Déformation</term>
<term>Vitesse</term>
<term>Quartz</term>
<term>Fabrique</term>
<term>Température</term>
<term>Facteur Q</term>
<term>Rupture</term>
<term>Contrainte cisaillement</term>
<term>Microstructure</term>
<term>Glissement</term>
<term>Fracturation</term>
<term>Microscopie électronique balayage</term>
<term>Donnée MEB</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heat-flow measurements imply that the San Andreas Fault operates at lower shear stresses than generally predicted from laboratory friction data. This suggests that a dramatic weakening effect or reduced heat production occur during dynamic slip. Numerical studies intimate that grain rolling or localization may cause weakening or reduced heating, however laboratory evidence for these effects are sparse. We directly measure frictional resistance (μ), shear heating and microstructural evolution with accumulated strain in layers of quartz powder sheared at a range of effective stresses (σ
<sub>n</sub>
= 5-70 MPa) and sliding velocities (V = 0.01-10 mm/s). Tests conducted at σ
<sub>n</sub>
≥ 25 MPa show strong evidence for shear localization due to intense grain fracture. In contrast, tests conducted at low effective stress (σ
<sub>n</sub>
= 5 MPa) show no preferential fabric development and minimal grain fracture hence we conclude that non-destructive processes such as grain rolling/sliding, distributed throughout the layer, dominate deformation. Temperature measured close to the fault increases systematically with σ
<sub>n</sub>
and V, consistent with a one-dimensional heat-flow solution for frictional heating in a finite width layer. Mechanical results indicate stable sliding (μ ∼0.6) for all tests, irrespective of deformation regime and show no evidence for reduced frictional resistance at rapid slip or high effective stresses. Our measurements verify that the heat production equation (q = μσ
<sub>n</sub>
V) holds regardless of localization state Or fracture regime. Thus, for quasistatic velocities (V ≤ 10 mm/s) and effective stresses relevant to earthquake rupture, neither grain rolling/sliding or shear localization appear to be a viable mechanism for the dramatic weakening or reduced heating required to explain the heat flow paradox.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0033-4553</s0>
</fA01>
<fA02 i1="01">
<s0>PAGYAV</s0>
</fA02>
<fA03 i2="1">
<s0>Pure Appl. Geophys.</s0>
</fA03>
<fA05>
<s2>157</s2>
</fA05>
<fA06>
<s2>11-12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Shear heating in granular layers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue: Microscopic and Macroscopic Simulation: Towards Predictive Modelling of the Earthquake Process</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MAIR (Karen)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MARONE (Chris)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MORA (Peter)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MATSU'URA (Mitsuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MADARIAGA (Raul)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>MINSTER (Jean-Bernard)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>QUAKES, Department of Earth Sciences, The University of Queensland</s1>
<s2>4072 Brisbane, Qld</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Earth and Planetary Physics, The University of Tokyo, 7-3-1, Hongo</s1>
<s2>Bunkyo-Ku, Tokyo 113-0033</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Laboratoire de géologie, école normale supérieur, 24 rue Lhomond</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego</s1>
<s2>La Jolla, CA 92093-0225</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>1847-1866</s1>
<s7>2</s7>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3536</s2>
<s5>354000093783410020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0109999</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Pure and Applied Geophysics</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Heat-flow measurements imply that the San Andreas Fault operates at lower shear stresses than generally predicted from laboratory friction data. This suggests that a dramatic weakening effect or reduced heat production occur during dynamic slip. Numerical studies intimate that grain rolling or localization may cause weakening or reduced heating, however laboratory evidence for these effects are sparse. We directly measure frictional resistance (μ), shear heating and microstructural evolution with accumulated strain in layers of quartz powder sheared at a range of effective stresses (σ
<sub>n</sub>
= 5-70 MPa) and sliding velocities (V = 0.01-10 mm/s). Tests conducted at σ
<sub>n</sub>
≥ 25 MPa show strong evidence for shear localization due to intense grain fracture. In contrast, tests conducted at low effective stress (σ
<sub>n</sub>
= 5 MPa) show no preferential fabric development and minimal grain fracture hence we conclude that non-destructive processes such as grain rolling/sliding, distributed throughout the layer, dominate deformation. Temperature measured close to the fault increases systematically with σ
<sub>n</sub>
and V, consistent with a one-dimensional heat-flow solution for frictional heating in a finite width layer. Mechanical results indicate stable sliding (μ ∼0.6) for all tests, irrespective of deformation regime and show no evidence for reduced frictional resistance at rapid slip or high effective stresses. Our measurements verify that the heat production equation (q = μσ
<sub>n</sub>
V) holds regardless of localization state Or fracture regime. Thus, for quasistatic velocities (V ≤ 10 mm/s) and effective stresses relevant to earthquake rupture, neither grain rolling/sliding or shear localization appear to be a viable mechanism for the dramatic weakening or reduced heating required to explain the heat flow paradox.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>225A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01L</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Faille San Andreas</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>San Andreas Fault</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Falla San Andreas</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Argile faille</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>fault gouge</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Salbanda milonítica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Flux géothermique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>heat flow</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Flujo geotérmico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Cisaillement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>shear</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Cizalladura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Frottement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>friction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Production chaleur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>heat production</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Producción calor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Déformation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>deformation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Vitesse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>velocity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Velocidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Quartz</s0>
<s2>NZ</s2>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>quartz</s0>
<s2>NZ</s2>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Cuarzo</s0>
<s2>NZ</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Fabrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>fabric</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Fábrica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Température</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>temperature</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Temperatura</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Facteur Q</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>Q</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Factor Q</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Rupture</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>rupture</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Ruptura</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Contrainte cisaillement</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>shear stress</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Tensión cizallamiento</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Microstructure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>microstructures</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Microestructura</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Glissement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>slip</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Fracturation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>fracturing</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Fracturación</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>62</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>scanning electron microscopy</s0>
<s5>62</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Donnée MEB</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>SEM data</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Dato MEB</s0>
<s5>63</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Californie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>California</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>California</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Tectosilicate</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>framework silicates</s0>
<s2>NZ</s2>
</fC07>
<fC07 i1="05" i2="2" l="FRE">
<s0>Silicate</s0>
</fC07>
<fC07 i1="05" i2="2" l="ENG">
<s0>silicates</s0>
</fC07>
<fC07 i1="05" i2="2" l="SPA">
<s0>Silicato</s0>
</fC07>
<fN21>
<s1>071</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Massachusetts Institute of Technology</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Mair, Karen" sort="Mair, Karen" uniqKey="Mair K" first="Karen" last="Mair">Karen Mair</name>
</region>
<name sortKey="Marone, Chris" sort="Marone, Chris" uniqKey="Marone C" first="Chris" last="Marone">Chris Marone</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005B16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 005B16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:01-0109999
   |texte=   Shear heating in granular layers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024