Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals

Identifieur interne : 005677 ( PascalFrancis/Checkpoint ); précédent : 005676; suivant : 005678

Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals

Auteurs : X. L. Wang [Australie] ; H. K. Liu [Australie] ; S. X. Dou [Australie]

Source :

RBID : Pascal:02-0206085

Descripteurs français

English descriptors

Abstract

The peak effect (PE) in pure, Pb and Pb + Y doped Bi2212 single crystals with different oxygen doping levels was studied by measuring M-H loops over a wide temperature range. The PE in pure Bi2212 crystals was obtained only for crystals with optimal oxygen doping and over-doping but not observed for oxygen under-doped crystals. For Pb doped Bi2212 crystals, the PE appeared at a higher field than in the pure crystals and persisted up to Tc. For (Bi1.64Pb0.36)Sr2Ca1-xYxCu2O8+y (x = 0, 0.05, 0.11, 0.33) single crystals, results show that at low temperatures, the peak field is smaller than in solely Pb doped crystals and decreases as x increases (x > 0.1). However, the peak field at high temperature for the x = 0.05 sample is higher than for heavily Pb doped Bi2212 crystals, indicative of strong pinning due to the co-doping. The formation of Bi5+ rich clusters, which cause the reduction of the c-axis lattice parameter and ρc, is proposed to be responsible for the appearance of the PE in the undoped crystals. The co-existence of Pb4+- and Bi5+-rich clusters causes the strong PE in Pb doped Bi2212 crystals. Y3+ is proposed to be an effective dopant at low doping levels for flux pinning at high temperatures. The PE for all the crystals was characterised by plotting (Hmax -Hmin)/Hmax vs T/Tc, where Hmin and Hmax represent the fields at which the magnetisation starts to increase (Hmin) and reaches a maximum (Hmax) at the peak position. Results showed that the evolution of the peak effect with temperature in the Pb and Pb + Y doped crystals was similar to that seen in Y123.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0206085

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals</title>
<author>
<name sortKey="Wang, X L" sort="Wang, X L" uniqKey="Wang X" first="X. L." last="Wang">X. L. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, H K" sort="Liu, H K" uniqKey="Liu H" first="H. K." last="Liu">H. K. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dou, S X" sort="Dou, S X" uniqKey="Dou S" first="S. X." last="Dou">S. X. Dou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0206085</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 02-0206085 INIST</idno>
<idno type="RBID">Pascal:02-0206085</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005826</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000913</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">005677</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">005677</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals</title>
<author>
<name sortKey="Wang, X L" sort="Wang, X L" uniqKey="Wang X" first="X. L." last="Wang">X. L. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, H K" sort="Liu, H K" uniqKey="Liu H" first="H. K." last="Liu">H. K. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dou, S X" sort="Dou, S X" uniqKey="Dou S" first="S. X." last="Dou">S. X. Dou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Wollongong, NSW 2522</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Physica. C. Superconductivity and its applications</title>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Physica. C. Superconductivity and its applications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bismuth oxides</term>
<term>Calcium oxides</term>
<term>Composition effect</term>
<term>Copper oxides</term>
<term>Experimental study</term>
<term>Flux pinning</term>
<term>High-Tc superconductors</term>
<term>Lead oxides</term>
<term>Magnetic hysteresis</term>
<term>Magnetization</term>
<term>Monocrystals</term>
<term>Nonstoichiometry</term>
<term>Peak effect</term>
<term>Strontium oxides</term>
<term>Temperature dependence</term>
<term>Yttrium oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet pic</term>
<term>Non stoechiométrie</term>
<term>Hystérésis magnétique</term>
<term>Dépendance température</term>
<term>Aimantation</term>
<term>Effet composition</term>
<term>Ancrage flux</term>
<term>Supraconducteur haute température</term>
<term>Monocristal</term>
<term>Bismuth oxyde</term>
<term>Calcium oxyde</term>
<term>Plomb oxyde</term>
<term>Cuivre oxyde</term>
<term>Strontium oxyde</term>
<term>Yttrium oxyde</term>
<term>Etude expérimentale</term>
<term>7425H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The peak effect (PE) in pure, Pb and Pb + Y doped Bi2212 single crystals with different oxygen doping levels was studied by measuring M-H loops over a wide temperature range. The PE in pure Bi2212 crystals was obtained only for crystals with optimal oxygen doping and over-doping but not observed for oxygen under-doped crystals. For Pb doped Bi2212 crystals, the PE appeared at a higher field than in the pure crystals and persisted up to T
<sub>c</sub>
. For (Bi
<sub>1.64</sub>
Pb
<sub>0.36</sub>
)Sr
<sub>2</sub>
Ca
<sub>1-x</sub>
Y
<sub>x</sub>
Cu
<sub>2</sub>
O
<sub>8+y</sub>
(x = 0, 0.05, 0.11, 0.33) single crystals, results show that at low temperatures, the peak field is smaller than in solely Pb doped crystals and decreases as x increases (x > 0.1). However, the peak field at high temperature for the x = 0.05 sample is higher than for heavily Pb doped Bi2212 crystals, indicative of strong pinning due to the co-doping. The formation of Bi
<sup>5+</sup>
rich clusters, which cause the reduction of the c-axis lattice parameter and ρ
<sub>c</sub>
, is proposed to be responsible for the appearance of the PE in the undoped crystals. The co-existence of Pb
<sup>4+</sup>
- and Bi
<sup>5+</sup>
-rich clusters causes the strong PE in Pb doped Bi2212 crystals. Y
<sup>3+</sup>
is proposed to be an effective dopant at low doping levels for flux pinning at high temperatures. The PE for all the crystals was characterised by plotting (H
<sub>max</sub>
-H
<sub>min</sub>
)/H
<sub>max</sub>
vs T/T
<sub>c</sub>
, where H
<sub>min</sub>
and H
<sub>max</sub>
represent the fields at which the magnetisation starts to increase (H
<sub>min</sub>
) and reaches a maximum (H
<sub>max</sub>
) at the peak position. Results showed that the evolution of the peak effect with temperature in the Pb and Pb + Y doped crystals was similar to that seen in Y123.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA05>
<s2>364-65</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>New
<sup>3</sup>
SC-3: Proceedings of the third International Conference on New Theories, Discoveries and Applications of Superconductors and Related Materials, Honolulu, Hawaii, USA, January 15-19, 2001</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WANG (X. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIU (H. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DOU (S. X.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>FAN (J. D.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MALOZOVSKY (Y. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BAGAYOKO (D.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BOK (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ODA (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>SALK (S. H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>WANG (J. T.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>WANG (Z. D.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>ZHAO (B. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>Wollongong, NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Southern University</s1>
<s2>Baton Rouge, LA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>ESPCI</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Hokkaido University</s1>
<s2>Sapporo</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Pohang University of Science & Technology</s1>
<s2>Pohang</s2>
<s3>KOR</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Hong Kong</s1>
<s2>Hong Kong</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Chinese Academy of Sciences</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA20>
<s1>622-625</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145C</s2>
<s5>354000103424431440</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0206085</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>Physica. C. Superconductivity and its applications</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The peak effect (PE) in pure, Pb and Pb + Y doped Bi2212 single crystals with different oxygen doping levels was studied by measuring M-H loops over a wide temperature range. The PE in pure Bi2212 crystals was obtained only for crystals with optimal oxygen doping and over-doping but not observed for oxygen under-doped crystals. For Pb doped Bi2212 crystals, the PE appeared at a higher field than in the pure crystals and persisted up to T
<sub>c</sub>
. For (Bi
<sub>1.64</sub>
Pb
<sub>0.36</sub>
)Sr
<sub>2</sub>
Ca
<sub>1-x</sub>
Y
<sub>x</sub>
Cu
<sub>2</sub>
O
<sub>8+y</sub>
(x = 0, 0.05, 0.11, 0.33) single crystals, results show that at low temperatures, the peak field is smaller than in solely Pb doped crystals and decreases as x increases (x > 0.1). However, the peak field at high temperature for the x = 0.05 sample is higher than for heavily Pb doped Bi2212 crystals, indicative of strong pinning due to the co-doping. The formation of Bi
<sup>5+</sup>
rich clusters, which cause the reduction of the c-axis lattice parameter and ρ
<sub>c</sub>
, is proposed to be responsible for the appearance of the PE in the undoped crystals. The co-existence of Pb
<sup>4+</sup>
- and Bi
<sup>5+</sup>
-rich clusters causes the strong PE in Pb doped Bi2212 crystals. Y
<sup>3+</sup>
is proposed to be an effective dopant at low doping levels for flux pinning at high temperatures. The PE for all the crystals was characterised by plotting (H
<sub>max</sub>
-H
<sub>min</sub>
)/H
<sub>max</sub>
vs T/T
<sub>c</sub>
, where H
<sub>min</sub>
and H
<sub>max</sub>
represent the fields at which the magnetisation starts to increase (H
<sub>min</sub>
) and reaches a maximum (H
<sub>max</sub>
) at the peak position. Results showed that the evolution of the peak effect with temperature in the Pb and Pb + Y doped crystals was similar to that seen in Y123.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D25H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet pic</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Peak effect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Non stoechiométrie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nonstoichiometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Effet composition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Composition effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Efecto composición</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Ancrage flux</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Flux pinning</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Supraconducteur haute température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>High-Tc superconductors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bismuth oxyde</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Bismuth oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Calcium oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Calcium oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plomb oxyde</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lead oxides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cuivre oxyde</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Copper oxides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Strontium oxyde</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Strontium oxides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Yttrium oxyde</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Yttrium oxides</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7425H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fN21>
<s1>119</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>New
<sup>3</sup>
SC-3 International Conference on New Theories, Discoveries and Applications of Superconductors and Related Materials</s1>
<s2>3</s2>
<s3>Honolulu, Hawaii USA</s3>
<s4>2001-01-15</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Wang, X L" sort="Wang, X L" uniqKey="Wang X" first="X. L." last="Wang">X. L. Wang</name>
</noRegion>
<name sortKey="Dou, S X" sort="Dou, S X" uniqKey="Dou S" first="S. X." last="Dou">S. X. Dou</name>
<name sortKey="Liu, H K" sort="Liu, H K" uniqKey="Liu H" first="H. K." last="Liu">H. K. Liu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005677 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 005677 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:02-0206085
   |texte=   Study of the peak effect in pure, Pb and Pb + Y doped Bi-2212 single crystals
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024