Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental generation of optical "Schrödinger cats" from photon number states

Identifieur interne : 003910 ( PascalFrancis/Checkpoint ); précédent : 003909; suivant : 003911

Experimental generation of optical "Schrödinger cats" from photon number states

Auteurs : Alexei Ourjoumtsev [France] ; Hyunseok Jeong [Australie] ; Rosa Tualle-Brouri [France] ; Philippe Grangier [France]

Source :

RBID : Pascal:08-0418760

Descripteurs français

English descriptors

Abstract

A "Schrödinger cat" state of free-propagating light can be defined as a quantum superposition of well separated coherent states.1,2 We demonstrated, theoretically and experimentally, a protocol which allows to generate arbitrarily large squeezed Schrödinger cat states, using a homodyne detection and photon number states as resources. We implemented this protocol experimentally with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly presents several quantum phase-space interference fringes between the "dead" and "alive" components, and it is large enough to become useful for experimental tests of quantum theory and quantum information processing.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0418760

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Experimental generation of optical "Schrödinger cats" from photon number states</title>
<author>
<name sortKey="Ourjoumtsev, Alexei" sort="Ourjoumtsev, Alexei" uniqKey="Ourjoumtsev A" first="Alexei" last="Ourjoumtsev">Alexei Ourjoumtsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
<wicri:noRegion>CNRS UMR 8501</wicri:noRegion>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Hyunseok" sort="Jeong, Hyunseok" uniqKey="Jeong H" first="Hyunseok" last="Jeong">Hyunseok Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Qld 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, Qld 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tualle Brouri, Rosa" sort="Tualle Brouri, Rosa" uniqKey="Tualle Brouri R" first="Rosa" last="Tualle-Brouri">Rosa Tualle-Brouri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
<wicri:noRegion>CNRS UMR 8501</wicri:noRegion>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grangier, Philippe" sort="Grangier, Philippe" uniqKey="Grangier P" first="Philippe" last="Grangier">Philippe Grangier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
<wicri:noRegion>CNRS UMR 8501</wicri:noRegion>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0418760</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0418760 INIST</idno>
<idno type="RBID">Pascal:08-0418760</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003346</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002D06</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003910</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003910</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Experimental generation of optical "Schrödinger cats" from photon number states</title>
<author>
<name sortKey="Ourjoumtsev, Alexei" sort="Ourjoumtsev, Alexei" uniqKey="Ourjoumtsev A" first="Alexei" last="Ourjoumtsev">Alexei Ourjoumtsev</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Palaiseau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Hyunseok" sort="Jeong, Hyunseok" uniqKey="Jeong H" first="Hyunseok" last="Jeong">Hyunseok Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Qld 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Brisbane, Qld 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tualle Brouri, Rosa" sort="Tualle Brouri, Rosa" uniqKey="Tualle Brouri R" first="Rosa" last="Tualle-Brouri">Rosa Tualle-Brouri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
<wicri:noRegion>CNRS UMR 8501</wicri:noRegion>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grangier, Philippe" sort="Grangier, Philippe" uniqKey="Grangier P" first="Philippe" last="Grangier">Philippe Grangier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
<wicri:noRegion>CNRS UMR 8501</wicri:noRegion>
<wicri:noRegion>91127 Palaiseau</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Experimental study</term>
<term>Homodyne detection</term>
<term>Information processing</term>
<term>Interference fringe</term>
<term>Phase space</term>
<term>Photon number state</term>
<term>Quantum communication</term>
<term>Quantum information</term>
<term>Quantum optics</term>
<term>Quantum theory</term>
<term>Superposition principle</term>
<term>Wigner function</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Détection homodyne</term>
<term>Traitement information</term>
<term>Optique quantique</term>
<term>Information quantique</term>
<term>Principe superposition</term>
<term>Fonction Wigner</term>
<term>Théorie quantique</term>
<term>Etude expérimentale</term>
<term>Frange interférence</term>
<term>Etat nombre photon</term>
<term>Espace phase</term>
<term>Communication quantique</term>
<term>0130C</term>
<term>4250D</term>
<term>0367</term>
<term>0367H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A "Schrödinger cat" state of free-propagating light can be defined as a quantum superposition of well separated coherent states.
<sup>1,2</sup>
We demonstrated, theoretically and experimentally, a protocol which allows to generate arbitrarily large squeezed Schrödinger cat states, using a homodyne detection and photon number states as resources. We implemented this protocol experimentally with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly presents several quantum phase-space interference fringes between the "dead" and "alive" components, and it is large enough to become useful for experimental tests of quantum theory and quantum information processing.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6780</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Experimental generation of optical "Schrödinger cats" from photon number states</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum communications realized : 10-12 September 2007, Boston, Massachusetts, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>OURJOUMTSEV (Alexei)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JEONG (Hyunseok)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TUALLE-BROURI (Rosa)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GRANGIER (Philippe)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ARAKAWA (Yasuhiko)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SASAKI (Masahide)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Qld 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>678010.1-678010.9</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6940-3</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172849520170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0418760</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE - The International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A "Schrödinger cat" state of free-propagating light can be defined as a quantum superposition of well separated coherent states.
<sup>1,2</sup>
We demonstrated, theoretically and experimentally, a protocol which allows to generate arbitrarily large squeezed Schrödinger cat states, using a homodyne detection and photon number states as resources. We implemented this protocol experimentally with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly presents several quantum phase-space interference fringes between the "dead" and "alive" components, and it is large enough to become useful for experimental tests of quantum theory and quantum information processing.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B50D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00C67H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Détection homodyne</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Homodyne detection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Traitement information</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Information processing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Procesamiento información</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Optique quantique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum optics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Information quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum information</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Principe superposition</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Superposition principle</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Principio superposición</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Fonction Wigner</s0>
<s5>24</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Wigner function</s0>
<s5>24</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Función Wigner</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Théorie quantique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum theory</s0>
<s5>25</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Frange interférence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Interference fringe</s0>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Franja interferencia</s0>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etat nombre photon</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Photon number state</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estado número fotón</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Espace phase</s0>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Phase space</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Communication quantique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum communication</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>4250D</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0367</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>0367H</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum communications realized</s1>
<s3>Boston MA USA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Palaiseau</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Ourjoumtsev, Alexei" sort="Ourjoumtsev, Alexei" uniqKey="Ourjoumtsev A" first="Alexei" last="Ourjoumtsev">Alexei Ourjoumtsev</name>
</region>
<name sortKey="Grangier, Philippe" sort="Grangier, Philippe" uniqKey="Grangier P" first="Philippe" last="Grangier">Philippe Grangier</name>
<name sortKey="Tualle Brouri, Rosa" sort="Tualle Brouri, Rosa" uniqKey="Tualle Brouri R" first="Rosa" last="Tualle-Brouri">Rosa Tualle-Brouri</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Jeong, Hyunseok" sort="Jeong, Hyunseok" uniqKey="Jeong H" first="Hyunseok" last="Jeong">Hyunseok Jeong</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003910 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 003910 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:08-0418760
   |texte=   Experimental generation of optical "Schrödinger cats" from photon number states
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024