Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of Particle Transport Acceleration in Porous Media

Identifieur interne : 003079 ( PascalFrancis/Checkpoint ); précédent : 003078; suivant : 003080

Mechanisms of Particle Transport Acceleration in Porous Media

Auteurs : M. Panfilov [France] ; I. Panfilova [France] ; Y. Stepanyants [Australie]

Source :

RBID : Pascal:08-0480472

Descripteurs français

English descriptors

Abstract

Experimental data show that the groundwater transport of radionuclides in porous media is frequently facilitated when accompanied with colloid particles. This is usually explained by the size exclusion mechanism which implies that the particles move through the largest pores where the flow velocity is higher. We call attention to three other mechanisms which influence the colloid particle motion, while determining both the probable transport facilitation and retardation. First of all, it is shown that the transport facilitation may be significantly reduced and even transformed into a retardation due to the growth of the effective suspension viscosity (a friction-limited facilitation). Secondly, we will show that the transport of particles through the largest pores can be retarded due to a reduced connectivity of the large-pore cluster (a percolation-breakup retardation). Thirdly, we highlight the Fermi mechanism of acceleration known in statistical physics which is based on the elastic collisions between particles. All three effects are analyzed in terms of the velocity enhancement factor, by using statistical models of porous media in the form of a capillary bundle and a 3D capillary network. Optimal and critical regimes of velocity enhancement are quantified. Estimations show that for realistic parameters, the maximal facilitation of colloid transport is close to the experimentally observed data.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0480472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanisms of Particle Transport Acceleration in Porous Media</title>
<author>
<name sortKey="Panfilov, M" sort="Panfilov, M" uniqKey="Panfilov M" first="M." last="Panfilov">M. Panfilov</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LEMTA, Nancy-Université, CNRS, 2, Avenue de la Foret de Haye, BP 160</s1>
<s2>Vandoeuvre-les-Nancy 54504</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>54504</wicri:noRegion>
<wicri:noRegion>BP 160</wicri:noRegion>
<wicri:noRegion>Vandoeuvre-les-Nancy 54504</wicri:noRegion>
<orgName type="university">Nancy-Université</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Panfilova, I" sort="Panfilova, I" uniqKey="Panfilova I" first="I." last="Panfilova">I. Panfilova</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LEMTA, Nancy-Université, CNRS, 2, Avenue de la Foret de Haye, BP 160</s1>
<s2>Vandoeuvre-les-Nancy 54504</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>54504</wicri:noRegion>
<wicri:noRegion>BP 160</wicri:noRegion>
<wicri:noRegion>Vandoeuvre-les-Nancy 54504</wicri:noRegion>
<orgName type="university">Nancy-Université</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stepanyants, Y" sort="Stepanyants, Y" uniqKey="Stepanyants Y" first="Y." last="Stepanyants">Y. Stepanyants</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ANSTO, PMB 1, Menai</s1>
<s2>Sydney, NWS 2234</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NWS 2234</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0480472</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0480472 INIST</idno>
<idno type="RBID">Pascal:08-0480472</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003265</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002D88</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003079</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanisms of Particle Transport Acceleration in Porous Media</title>
<author>
<name sortKey="Panfilov, M" sort="Panfilov, M" uniqKey="Panfilov M" first="M." last="Panfilov">M. Panfilov</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LEMTA, Nancy-Université, CNRS, 2, Avenue de la Foret de Haye, BP 160</s1>
<s2>Vandoeuvre-les-Nancy 54504</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
<orgName type="university">Nancy-Université</orgName>
</affiliation>
</author>
<author>
<name sortKey="Panfilova, I" sort="Panfilova, I" uniqKey="Panfilova I" first="I." last="Panfilova">I. Panfilova</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>LEMTA, Nancy-Université, CNRS, 2, Avenue de la Foret de Haye, BP 160</s1>
<s2>Vandoeuvre-les-Nancy 54504</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>54504</wicri:noRegion>
<wicri:noRegion>BP 160</wicri:noRegion>
<wicri:noRegion>Vandoeuvre-les-Nancy 54504</wicri:noRegion>
<orgName type="university">Nancy-Université</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stepanyants, Y" sort="Stepanyants, Y" uniqKey="Stepanyants Y" first="Y." last="Stepanyants">Y. Stepanyants</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ANSTO, PMB 1, Menai</s1>
<s2>Sydney, NWS 2234</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NWS 2234</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Transport in porous media</title>
<title level="j" type="abbreviated">Transp. porous media</title>
<idno type="ISSN">0169-3913</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Transport in porous media</title>
<title level="j" type="abbreviated">Transp. porous media</title>
<idno type="ISSN">0169-3913</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>aquifers</term>
<term>capillarity</term>
<term>colloidal materials</term>
<term>critical regimes</term>
<term>experimental studies</term>
<term>friction</term>
<term>ground water</term>
<term>microstructures</term>
<term>models</term>
<term>networks</term>
<term>particles</term>
<term>particulate matters</term>
<term>percolation</term>
<term>pollution</term>
<term>porous media</term>
<term>radionucleids</term>
<term>suspension</term>
<term>transport</term>
<term>velocity</term>
<term>viscosity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Particule</term>
<term>Transport</term>
<term>Milieu poreux</term>
<term>Eau souterraine</term>
<term>Aquifère</term>
<term>Radionucléide</term>
<term>Vitesse</term>
<term>Suspension</term>
<term>Viscosité</term>
<term>Frottement</term>
<term>Percolation</term>
<term>Modèle</term>
<term>Réseau</term>
<term>Régime critique</term>
<term>Matière particulaire</term>
<term>Etude expérimentale</term>
<term>Matière colloïdale</term>
<term>Capillarité</term>
<term>Pollution</term>
<term>Microstructure</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Eau souterraine</term>
<term>Pollution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Experimental data show that the groundwater transport of radionuclides in porous media is frequently facilitated when accompanied with colloid particles. This is usually explained by the size exclusion mechanism which implies that the particles move through the largest pores where the flow velocity is higher. We call attention to three other mechanisms which influence the colloid particle motion, while determining both the probable transport facilitation and retardation. First of all, it is shown that the transport facilitation may be significantly reduced and even transformed into a retardation due to the growth of the effective suspension viscosity (a friction-limited facilitation). Secondly, we will show that the transport of particles through the largest pores can be retarded due to a reduced connectivity of the large-pore cluster (a percolation-breakup retardation). Thirdly, we highlight the Fermi mechanism of acceleration known in statistical physics which is based on the elastic collisions between particles. All three effects are analyzed in terms of the velocity enhancement factor, by using statistical models of porous media in the form of a capillary bundle and a 3D capillary network. Optimal and critical regimes of velocity enhancement are quantified. Estimations show that for realistic parameters, the maximal facilitation of colloid transport is close to the experimentally observed data.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-3913</s0>
</fA01>
<fA02 i1="01">
<s0>TPMEEI</s0>
</fA02>
<fA03 i2="1">
<s0>Transp. porous media</s0>
</fA03>
<fA05>
<s2>74</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanisms of Particle Transport Acceleration in Porous Media</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PANFILOV (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PANFILOVA (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEPANYANTS (Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>LEMTA, Nancy-Université, CNRS, 2, Avenue de la Foret de Haye, BP 160</s1>
<s2>Vandoeuvre-les-Nancy 54504</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ANSTO, PMB 1, Menai</s1>
<s2>Sydney, NWS 2234</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>47-69</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21419</s2>
<s5>354000200331230040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0480472</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Transport in porous media</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Experimental data show that the groundwater transport of radionuclides in porous media is frequently facilitated when accompanied with colloid particles. This is usually explained by the size exclusion mechanism which implies that the particles move through the largest pores where the flow velocity is higher. We call attention to three other mechanisms which influence the colloid particle motion, while determining both the probable transport facilitation and retardation. First of all, it is shown that the transport facilitation may be significantly reduced and even transformed into a retardation due to the growth of the effective suspension viscosity (a friction-limited facilitation). Secondly, we will show that the transport of particles through the largest pores can be retarded due to a reduced connectivity of the large-pore cluster (a percolation-breakup retardation). Thirdly, we highlight the Fermi mechanism of acceleration known in statistical physics which is based on the elastic collisions between particles. All three effects are analyzed in terms of the velocity enhancement factor, by using statistical models of porous media in the form of a capillary bundle and a 3D capillary network. Optimal and critical regimes of velocity enhancement are quantified. Estimations show that for realistic parameters, the maximal facilitation of colloid transport is close to the experimentally observed data.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01O04</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01N02</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226B04</s0>
</fC02>
<fC02 i1="04" i2="2">
<s0>226A02</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Particule</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>particles</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Milieu poreux</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>porous media</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Medio poroso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Eau souterraine</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>ground water</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Agua subterránea</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Aquifère</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>aquifers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Radionucléide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>radionucleids</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Radionucleido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Vitesse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>velocity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Velocidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Suspension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>suspension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Suspensión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Viscosité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>viscosity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Viscosidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Frottement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>friction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Percolation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>percolation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Percolación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>models</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Réseau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>networks</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Régime critique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>critical regimes</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Régimen crítico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Matière particulaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>particulate matters</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Partícula elemental</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Matière colloïdale</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>colloidal materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Capillarité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>capillarity</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Capilaridad</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>pollution</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Polución</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Microstructure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>microstructures</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Microestructura</s0>
<s5>21</s5>
</fC03>
<fN21>
<s1>308</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
</settlement>
<orgName>
<li>Nancy-Université</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Panfilov, M" sort="Panfilov, M" uniqKey="Panfilov M" first="M." last="Panfilov">M. Panfilov</name>
</region>
<name sortKey="Panfilova, I" sort="Panfilova, I" uniqKey="Panfilova I" first="I." last="Panfilova">I. Panfilova</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Stepanyants, Y" sort="Stepanyants, Y" uniqKey="Stepanyants Y" first="Y." last="Stepanyants">Y. Stepanyants</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 003079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:08-0480472
   |texte=   Mechanisms of Particle Transport Acceleration in Porous Media
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024