Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pitavastatin: Novel effects on lipid parameters

Identifieur interne : 001789 ( PascalFrancis/Checkpoint ); précédent : 001788; suivant : 001790

Pitavastatin: Novel effects on lipid parameters

Auteurs : M. John Chapman [France]

Source :

RBID : Pascal:12-0003281

Descripteurs français

English descriptors

Abstract

Atherogenic dyslipidemia is characterised by high levels of triglycerides, low levels of high-density lipoprotein-cholesterol (HDL-C), and moderate to marked elevations in low-density lipoprotein-cholesterol (LDL-C) concentrations; such dyslipidemia is further characterised by high apolipoprotein B (apoB): apolipoprotein A1 (apoA1) ratios. Numerous clinical trials have demonstrated that statins are effective in lowering LDL-C and reducing cardiovascular (CV) risk in people with dyslipidemia. However, the most effective treatments should target all of the key atherogenic features, rather than LDL-C alone. Pitavastatin is a new member of the statin class whose distinct pharmacological features translate into a broad spectrum of action on both apoB-containing and apoA1-containing lipoprotein components of the atherogenic lipid profile. The efficacy and safety of this statin has been demonstrated by a large clinical development programme conducted both in Japanese and Caucasian populations. Phase III and IV studies in a wide range of patients with primary hypercholesterolemia or combined dyslipidemia showed that 12 weeks' treatment with pitavastatin 1-4mg was well tolerated, significantly improved lipid profiles (including LDL-C, TG, and HDL-C levels) and increased the EAS-/NCEP ATP III-recommended LDL-C target attainment rate to a similar or greater degree as comparable doses of atorvastatin, simvastatin, or pravastatin. Results were similar across all patient groups and were generally sustained after 52 weeks of treatment. However, whereas the effects of atorvastatin and simvastatin on HDL-C levels remained constant over the long term, pitavastatin-treated patients experienced progressive and maintained elevations in HDL-C, ultimately increasing by up to 14.3% vs. initial baseline. In this context, it is significant that the in vitro studies of Yamashita et al. [J Atheroscler Thromb 2010;17:436-51] have shown pitavastatin to be distinguished by its potent stimulation of apoA1 production in hepatocyte-like cells. These findings suggest that pitavastatin may be highly efficacious in raising levels of lipid-poor apoA1 particles, which are known to be highly active in ABCA1-mediated cellular cholesterol efflux, an observation which is pertinent to the excessive accumulation of cholesterol in macrophage foam cells of the atherosclerotic plaque. Indeed, the intravascular remodelling and maturation of lipid-poor apoA1 particles is known to drive flux of apoA1, cholesterol and phospholipid through the HDL pathway. It is equally relevant that pitavastatin therapy has been shown to be efficacious in markedly reducing coronary atheroma volume in acute coronary syndrome patients in the JAPAN-ACS trial, a therapeutic effect which may be linked to its impact on apoA1/HDL metabolism and function. Overall, Phase III and IV studies demonstrate that pitavastatin 1-4mg is well tolerated, attenuates the atherogenic lipid profile and increases LDL-C target attainment rates with a similar or greater efficacy to comparable doses of atorvastatin, simvastatin and pravastatin. Furthermore, pitavastatin may be particularly beneficial in high-risk patients with elevated concentrations of TG-rich lipoproteins and low levels of HDL-C, and in whom the atheroprotective function of HDL particles is typically defective; significantly, such patients typically exhibit persistent, residual cardiometabolic risk even when LDL-C is at goal. In this context, it is relevant that such patient groups cover a wide spectrum of metabolic diseases, including metabolic syndrome, type 2 diabetes, coronary disease, familial and non-familial forms of hypercholesterolemia, auto-immune diseases such as rheumatoid arthritis and lupus, renal disease and some forms of hepatic insufficiency.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0003281

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pitavastatin: Novel effects on lipid parameters</title>
<author>
<name sortKey="Chapman, M John" sort="Chapman, M John" uniqKey="Chapman M" first="M. John" last="Chapman">M. John Chapman</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S939, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 Blud l'Hôpital</s1>
<s2>75651 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0003281</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0003281 INIST</idno>
<idno type="RBID">Pascal:12-0003281</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001768</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004740</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001789</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001789</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Pitavastatin: Novel effects on lipid parameters</title>
<author>
<name sortKey="Chapman, M John" sort="Chapman, M John" uniqKey="Chapman M" first="M. John" last="Chapman">M. John Chapman</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S939, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 Blud l'Hôpital</s1>
<s2>75651 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atherosclerosis. Supplement : (Amsterdam)</title>
<title level="j" type="abbreviated">Atherosclerosis, Suppl. : (Amst.)</title>
<idno type="ISSN">1567-5688</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atherosclerosis. Supplement : (Amsterdam)</title>
<title level="j" type="abbreviated">Atherosclerosis, Suppl. : (Amst.)</title>
<idno type="ISSN">1567-5688</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antilipemic agent</term>
<term>Atherosclerosis</term>
<term>Cardiovascular disease</term>
<term>Cholesterol</term>
<term>Dyslipemia</term>
<term>Hypercholesterolemia</term>
<term>Hypocholesterolemic agent</term>
<term>Lipids</term>
<term>Lipoprotein HDL</term>
<term>Pitavastatin</term>
<term>Statin derivative</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hypercholestérolémie</term>
<term>Dyslipémie</term>
<term>Pathologie de l'appareil circulatoire</term>
<term>Athérosclérose</term>
<term>Pitavastatine</term>
<term>Dérivé de la statine</term>
<term>Lipoprotéine HDL</term>
<term>Hypolipémiant</term>
<term>Hypocholestérolémiant</term>
<term>Cholestérol</term>
<term>Lipide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atherogenic dyslipidemia is characterised by high levels of triglycerides, low levels of high-density lipoprotein-cholesterol (HDL-C), and moderate to marked elevations in low-density lipoprotein-cholesterol (LDL-C) concentrations; such dyslipidemia is further characterised by high apolipoprotein B (apoB): apolipoprotein A1 (apoA1) ratios. Numerous clinical trials have demonstrated that statins are effective in lowering LDL-C and reducing cardiovascular (CV) risk in people with dyslipidemia. However, the most effective treatments should target all of the key atherogenic features, rather than LDL-C alone. Pitavastatin is a new member of the statin class whose distinct pharmacological features translate into a broad spectrum of action on both apoB-containing and apoA1-containing lipoprotein components of the atherogenic lipid profile. The efficacy and safety of this statin has been demonstrated by a large clinical development programme conducted both in Japanese and Caucasian populations. Phase III and IV studies in a wide range of patients with primary hypercholesterolemia or combined dyslipidemia showed that 12 weeks' treatment with pitavastatin 1-4mg was well tolerated, significantly improved lipid profiles (including LDL-C, TG, and HDL-C levels) and increased the EAS-/NCEP ATP III-recommended LDL-C target attainment rate to a similar or greater degree as comparable doses of atorvastatin, simvastatin, or pravastatin. Results were similar across all patient groups and were generally sustained after 52 weeks of treatment. However, whereas the effects of atorvastatin and simvastatin on HDL-C levels remained constant over the long term, pitavastatin-treated patients experienced progressive and maintained elevations in HDL-C, ultimately increasing by up to 14.3% vs. initial baseline. In this context, it is significant that the in vitro studies of Yamashita et al. [J Atheroscler Thromb 2010;17:436-51] have shown pitavastatin to be distinguished by its potent stimulation of apoA1 production in hepatocyte-like cells. These findings suggest that pitavastatin may be highly efficacious in raising levels of lipid-poor apoA1 particles, which are known to be highly active in ABCA1-mediated cellular cholesterol efflux, an observation which is pertinent to the excessive accumulation of cholesterol in macrophage foam cells of the atherosclerotic plaque. Indeed, the intravascular remodelling and maturation of lipid-poor apoA1 particles is known to drive flux of apoA1, cholesterol and phospholipid through the HDL pathway. It is equally relevant that pitavastatin therapy has been shown to be efficacious in markedly reducing coronary atheroma volume in acute coronary syndrome patients in the JAPAN-ACS trial, a therapeutic effect which may be linked to its impact on apoA1/HDL metabolism and function. Overall, Phase III and IV studies demonstrate that pitavastatin 1-4mg is well tolerated, attenuates the atherogenic lipid profile and increases LDL-C target attainment rates with a similar or greater efficacy to comparable doses of atorvastatin, simvastatin and pravastatin. Furthermore, pitavastatin may be particularly beneficial in high-risk patients with elevated concentrations of TG-rich lipoproteins and low levels of HDL-C, and in whom the atheroprotective function of HDL particles is typically defective; significantly, such patients typically exhibit persistent, residual cardiometabolic risk even when LDL-C is at goal. In this context, it is relevant that such patient groups cover a wide spectrum of metabolic diseases, including metabolic syndrome, type 2 diabetes, coronary disease, familial and non-familial forms of hypercholesterolemia, auto-immune diseases such as rheumatoid arthritis and lupus, renal disease and some forms of hepatic insufficiency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1567-5688</s0>
</fA01>
<fA03 i2="1">
<s0>Atherosclerosis, Suppl. : (Amst.)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pitavastatin: Novel effects on lipid parameters</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>NOVEL STRATEGIES FOR RAISING HDL-C: PITAVASTATIN IN CLINICAL PRACTICE</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHAPMAN (M. John)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BARTER (Philip)</s1>
<s9>limin.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S939, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 Blud l'Hôpital</s1>
<s2>75651 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>The Heart Research Institute, 7 Eliza Street, Newtown</s1>
<s2>Sydney, NSW 2050</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>277-284</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1713S</s2>
<s5>354000505591380030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0003281</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atherosclerosis. Supplement : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Atherogenic dyslipidemia is characterised by high levels of triglycerides, low levels of high-density lipoprotein-cholesterol (HDL-C), and moderate to marked elevations in low-density lipoprotein-cholesterol (LDL-C) concentrations; such dyslipidemia is further characterised by high apolipoprotein B (apoB): apolipoprotein A1 (apoA1) ratios. Numerous clinical trials have demonstrated that statins are effective in lowering LDL-C and reducing cardiovascular (CV) risk in people with dyslipidemia. However, the most effective treatments should target all of the key atherogenic features, rather than LDL-C alone. Pitavastatin is a new member of the statin class whose distinct pharmacological features translate into a broad spectrum of action on both apoB-containing and apoA1-containing lipoprotein components of the atherogenic lipid profile. The efficacy and safety of this statin has been demonstrated by a large clinical development programme conducted both in Japanese and Caucasian populations. Phase III and IV studies in a wide range of patients with primary hypercholesterolemia or combined dyslipidemia showed that 12 weeks' treatment with pitavastatin 1-4mg was well tolerated, significantly improved lipid profiles (including LDL-C, TG, and HDL-C levels) and increased the EAS-/NCEP ATP III-recommended LDL-C target attainment rate to a similar or greater degree as comparable doses of atorvastatin, simvastatin, or pravastatin. Results were similar across all patient groups and were generally sustained after 52 weeks of treatment. However, whereas the effects of atorvastatin and simvastatin on HDL-C levels remained constant over the long term, pitavastatin-treated patients experienced progressive and maintained elevations in HDL-C, ultimately increasing by up to 14.3% vs. initial baseline. In this context, it is significant that the in vitro studies of Yamashita et al. [J Atheroscler Thromb 2010;17:436-51] have shown pitavastatin to be distinguished by its potent stimulation of apoA1 production in hepatocyte-like cells. These findings suggest that pitavastatin may be highly efficacious in raising levels of lipid-poor apoA1 particles, which are known to be highly active in ABCA1-mediated cellular cholesterol efflux, an observation which is pertinent to the excessive accumulation of cholesterol in macrophage foam cells of the atherosclerotic plaque. Indeed, the intravascular remodelling and maturation of lipid-poor apoA1 particles is known to drive flux of apoA1, cholesterol and phospholipid through the HDL pathway. It is equally relevant that pitavastatin therapy has been shown to be efficacious in markedly reducing coronary atheroma volume in acute coronary syndrome patients in the JAPAN-ACS trial, a therapeutic effect which may be linked to its impact on apoA1/HDL metabolism and function. Overall, Phase III and IV studies demonstrate that pitavastatin 1-4mg is well tolerated, attenuates the atherogenic lipid profile and increases LDL-C target attainment rates with a similar or greater efficacy to comparable doses of atorvastatin, simvastatin and pravastatin. Furthermore, pitavastatin may be particularly beneficial in high-risk patients with elevated concentrations of TG-rich lipoproteins and low levels of HDL-C, and in whom the atheroprotective function of HDL particles is typically defective; significantly, such patients typically exhibit persistent, residual cardiometabolic risk even when LDL-C is at goal. In this context, it is relevant that such patient groups cover a wide spectrum of metabolic diseases, including metabolic syndrome, type 2 diabetes, coronary disease, familial and non-familial forms of hypercholesterolemia, auto-immune diseases such as rheumatoid arthritis and lupus, renal disease and some forms of hepatic insufficiency.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B12B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B02F04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hypercholestérolémie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Hypercholesterolemia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hipercolesterolemia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dyslipémie</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dyslipemia</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dislipemia</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pathologie de l'appareil circulatoire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Cardiovascular disease</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Aparato circulatorio patología</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Athérosclérose</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Atherosclerosis</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Ateroesclerosis</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pitavastatine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Pitavastatin</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pitavastatina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dérivé de la statine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Statin derivative</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Statina derivado</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Lipoprotéine HDL</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Lipoprotein HDL</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Lipoproteina HDL</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hypolipémiant</s0>
<s5>78</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Antilipemic agent</s0>
<s5>78</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hipolipemiante</s0>
<s5>78</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Hypocholestérolémiant</s0>
<s5>79</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Hypocholesterolemic agent</s0>
<s5>79</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Hipocolesterolemiante</s0>
<s5>79</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cholestérol</s0>
<s2>NK</s2>
<s5>80</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cholesterol</s0>
<s2>NK</s2>
<s5>80</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Colesterol</s0>
<s2>NK</s2>
<s5>80</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Lipide</s0>
<s5>81</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Lipids</s0>
<s5>81</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Lípido</s0>
<s5>81</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Inhibiteur de l'HMG-CoA reductase</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>HMG-CoA reductase inhibitor</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Inhibidor HMG-CoA reductase</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Maladie métabolique</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Metabolic diseases</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Metabolismo patología</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Hyperlipoprotéinémie</s0>
<s2>NM</s2>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Hyperlipoproteinemia</s0>
<s2>NM</s2>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Hiperlipoproteinemia</s0>
<s2>NM</s2>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Pathologie des vaisseaux sanguins</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vascular disease</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vaso sanguíneo patología</s0>
<s5>40</s5>
</fC07>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Chapman, M John" sort="Chapman, M John" uniqKey="Chapman M" first="M. John" last="Chapman">M. John Chapman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001789 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001789 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0003281
   |texte=   Pitavastatin: Novel effects on lipid parameters
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024