Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system

Identifieur interne : 001335 ( PascalFrancis/Checkpoint ); précédent : 001334; suivant : 001336

Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system

Auteurs : E. N. Koffi [France] ; P. J. Rayner [Australie] ; M. Scholze [Royaume-Uni] ; C. Beer [Allemagne]

Source :

RBID : Pascal:12-0250236

Descripteurs français

English descriptors

Abstract

[1] This paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO2 observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 ± 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO2 observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0250236

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system</title>
<author>
<name sortKey="Koffi, E N" sort="Koffi, E N" uniqKey="Koffi E" first="E. N." last="Koffi">E. N. Koffi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Scholze, M" sort="Scholze, M" uniqKey="Scholze M" first="M." last="Scholze">M. Scholze</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Bristol</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beer, C" sort="Beer, C" uniqKey="Beer C" first="C." last="Beer">C. Beer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Max Planck Institute for Biogeochemistry</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0250236</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0250236 INIST</idno>
<idno type="RBID">Pascal:12-0250236</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001285</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004C31</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001335</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001335</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system</title>
<author>
<name sortKey="Koffi, E N" sort="Koffi, E N" uniqKey="Koffi E" first="E. N." last="Koffi">E. N. Koffi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Scholze, M" sort="Scholze, M" uniqKey="Scholze M" first="M." last="Scholze">M. Scholze</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Bristol</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beer, C" sort="Beer, C" uniqKey="Beer C" first="C." last="Beer">C. Beer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Max Planck Institute for Biogeochemistry</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Global biogeochemical cycles</title>
<title level="j" type="abbreviated">Glob. biogeochem. cycles</title>
<idno type="ISSN">0886-6236</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Global biogeochemical cycles</title>
<title level="j" type="abbreviated">Glob. biogeochem. cycles</title>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon dioxide</term>
<term>assimilation</term>
<term>atmosphere</term>
<term>biosphere</term>
<term>carbon cycle</term>
<term>currents</term>
<term>ecosystems</term>
<term>experimental studies</term>
<term>global</term>
<term>inverse problem</term>
<term>models</term>
<term>networks</term>
<term>primary productivity</term>
<term>probability</term>
<term>transport</term>
<term>uncertainties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Productivité primaire</term>
<term>Ecosystème</term>
<term>Cycle carbone</term>
<term>Assimilation</term>
<term>Transport</term>
<term>Modèle</term>
<term>Biosphère</term>
<term>Atmosphère</term>
<term>Monde</term>
<term>Courant</term>
<term>Réseau</term>
<term>Etude expérimentale</term>
<term>Incertitude</term>
<term>Dioxyde de carbone</term>
<term>Probabilité</term>
<term>Problème inverse</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biosphère</term>
<term>Atmosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] This paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO
<sub>2</sub>
observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 ± 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO
<sub>2</sub>
observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0886-6236</s0>
</fA01>
<fA02 i1="01">
<s0>GBCYEP</s0>
</fA02>
<fA03 i2="1">
<s0>Glob. biogeochem. cycles</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOFFI (E. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAYNER (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHOLZE (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BEER (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Earth Sciences, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>GB1024.1-GB1024.15</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21109</s2>
<s5>354000507950620240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0250236</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Global biogeochemical cycles</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] This paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO
<sub>2</sub>
observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 ± 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO
<sub>2</sub>
observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B04A</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01B</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220B</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Productivité primaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>primary productivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Ecosystème</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>ecosystems</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Ecosistema</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Cycle carbone</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>carbon cycle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Assimilation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>assimilation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Asimilación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Transport</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>transport</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Biosphère</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>biosphere</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Biosfera</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Atmosphère</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>atmosphere</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Atmósfera</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Monde</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>global</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Courant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>currents</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Réseau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>networks</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Incertitude</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>uncertainties</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Probabilité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>probability</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Probabilidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>191</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Victoria (État)</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Gif-sur-Yvette</li>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Koffi, E N" sort="Koffi, E N" uniqKey="Koffi E" first="E. N." last="Koffi">E. N. Koffi</name>
</region>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
</region>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Scholze, M" sort="Scholze, M" uniqKey="Scholze M" first="M." last="Scholze">M. Scholze</name>
</noRegion>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Beer, C" sort="Beer, C" uniqKey="Beer C" first="C." last="Beer">C. Beer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001335 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001335 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0250236
   |texte=   Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024