Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling

Identifieur interne : 001253 ( PascalFrancis/Checkpoint ); précédent : 001252; suivant : 001254

Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling

Auteurs : ZHUOXIANG REN [France] ; HUI QU [République populaire de Chine] ; XIAOYU XU [République populaire de Chine]

Source :

RBID : Pascal:12-0241098

Descripteurs français

English descriptors

Abstract

The sensitivity of capacitances to the design parameters can be computed either by the derivative of state variables (the derivative method) or by the adjoint variable method. This paper proposes a second order sensitivity computation method that combines the two methods in exploring the solutions of the derivative of state variables and of the adjoint variables. By using the variational method for the electric flux computation, it can be shown that the right hand side of the adjoint system is identical to the right hand side of the original system in capacitance matrix extraction. The computational complexity of the method is hence identical to that of the first order sensitivity using the derivative method, which is linear to the number of design parameters. The first and second order derivatives of the material matrix necessary in the implementation are obtained with the help of the first and second order local jacobian derivatives. The method is validated through an example of a comb-drive microelectromechanical system (MEMS).


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0241098

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling</title>
<author>
<name sortKey="Zhuoxiang Ren" sort="Zhuoxiang Ren" uniqKey="Zhuoxiang Ren" last="Zhuoxiang Ren">ZHUOXIANG REN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UPMC, BC252, 4 Place Jussieu</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>75005 Paris</wicri:noRegion>
<placeName>
<settlement type="city">Paris</settlement>
<region type="région" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hui Qu" sort="Hui Qu" uniqKey="Hui Qu" last="Hui Qu">HUI QU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Electrical Engineering, Chinese Academy of Sciences, Zhongguancun</s1>
<s2>Haidian, Beijing 100190</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xiaoyu Xu" sort="Xiaoyu Xu" uniqKey="Xiaoyu Xu" last="Xiaoyu Xu">XIAOYU XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Microelectronics, Chinese Academy of Sciences</s1>
<s2>Chaoyang, Beijing 100029</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0241098</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0241098 INIST</idno>
<idno type="RBID">Pascal:12-0241098</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001337</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004B78</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001253</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001253</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling</title>
<author>
<name sortKey="Zhuoxiang Ren" sort="Zhuoxiang Ren" uniqKey="Zhuoxiang Ren" last="Zhuoxiang Ren">ZHUOXIANG REN</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>UPMC, BC252, 4 Place Jussieu</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hui Qu" sort="Hui Qu" uniqKey="Hui Qu" last="Hui Qu">HUI QU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Electrical Engineering, Chinese Academy of Sciences, Zhongguancun</s1>
<s2>Haidian, Beijing 100190</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xiaoyu Xu" sort="Xiaoyu Xu" uniqKey="Xiaoyu Xu" last="Xiaoyu Xu">XIAOYU XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Microelectronics, Chinese Academy of Sciences</s1>
<s2>Chaoyang, Beijing 100029</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on magnetics</title>
<title level="j" type="abbreviated">IEEE trans. magn.</title>
<idno type="ISSN">0018-9464</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on magnetics</title>
<title level="j" type="abbreviated">IEEE trans. magn.</title>
<idno type="ISSN">0018-9464</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Capacitance</term>
<term>Finite element method</term>
<term>First order</term>
<term>Magnetic properties</term>
<term>Modelling</term>
<term>Second order</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ordre 2</term>
<term>Capacité électrique</term>
<term>Méthode élément fini</term>
<term>Modélisation</term>
<term>Ordre 1</term>
<term>Propriété magnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sensitivity of capacitances to the design parameters can be computed either by the derivative of state variables (the derivative method) or by the adjoint variable method. This paper proposes a second order sensitivity computation method that combines the two methods in exploring the solutions of the derivative of state variables and of the adjoint variables. By using the variational method for the electric flux computation, it can be shown that the right hand side of the adjoint system is identical to the right hand side of the original system in capacitance matrix extraction. The computational complexity of the method is hence identical to that of the first order sensitivity using the derivative method, which is linear to the number of design parameters. The first and second order derivatives of the material matrix necessary in the implementation are obtained with the help of the first and second order local jacobian derivatives. The method is validated through an example of a comb-drive microelectromechanical system (MEMS).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9464</s0>
</fA01>
<fA02 i1="01">
<s0>IEMGAQ</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. magn.</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>COMPUMAG 2011: Selected papers from the 18th International Conference on the Computation of Electromagnetic Fields, Sydney, Australia, July 12-15, 2011</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHUOXIANG REN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HUI QU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIAOYU XU</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TAKAHASHI (Norio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DORRELL (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUO (Youguang)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>UPMC, BC252, 4 Place Jussieu</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Electrical Engineering, Chinese Academy of Sciences, Zhongguancun</s1>
<s2>Haidian, Beijing 100190</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Microelectronics, Chinese Academy of Sciences</s1>
<s2>Chaoyang, Beijing 100029</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Okayama University</s1>
<s2>Okayama</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Technology</s1>
<s2>Sydney</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Compumag Society</s1>
<s3>INT</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>231-234</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222H6</s2>
<s5>354000506946040150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0241098</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on magnetics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The sensitivity of capacitances to the design parameters can be computed either by the derivative of state variables (the derivative method) or by the adjoint variable method. This paper proposes a second order sensitivity computation method that combines the two methods in exploring the solutions of the derivative of state variables and of the adjoint variables. By using the variational method for the electric flux computation, it can be shown that the right hand side of the adjoint system is identical to the right hand side of the original system in capacitance matrix extraction. The computational complexity of the method is hence identical to that of the first order sensitivity using the derivative method, which is linear to the number of design parameters. The first and second order derivatives of the material matrix necessary in the implementation are obtained with the help of the first and second order local jacobian derivatives. The method is validated through an example of a comb-drive microelectromechanical system (MEMS).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A90</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ordre 2</s0>
<s5>55</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Second order</s0>
<s5>55</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Orden 2</s0>
<s5>55</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Capacité électrique</s0>
<s5>56</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Capacitance</s0>
<s5>56</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>57</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>58</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>58</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>59</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>First order</s0>
<s5>59</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>59</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>60</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>60</s5>
</fC03>
<fN21>
<s1>184</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>COMPUMAG 2011 International Conference on the Computation of Electromagnetic Fields</s1>
<s2>18</s2>
<s3>Sydney AUS</s3>
<s4>2011-07-12</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Zhuoxiang Ren" sort="Zhuoxiang Ren" uniqKey="Zhuoxiang Ren" last="Zhuoxiang Ren">ZHUOXIANG REN</name>
</region>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hui Qu" sort="Hui Qu" uniqKey="Hui Qu" last="Hui Qu">HUI QU</name>
</noRegion>
<name sortKey="Xiaoyu Xu" sort="Xiaoyu Xu" uniqKey="Xiaoyu Xu" last="Xiaoyu Xu">XIAOYU XU</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0241098
   |texte=   Computation of Second Order Capacitance Sensitivity Using Adjoint Method in Finite Element Modeling
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024