Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The HDO/H2O relationship in tropospheric water vapor in an idealized "last-saturation" model

Identifieur interne : 000C92 ( PascalFrancis/Checkpoint ); précédent : 000C91; suivant : 000C93

The HDO/H2O relationship in tropospheric water vapor in an idealized "last-saturation" model

Auteurs : S. C. Sherwood [Australie] ; C. Risi [France]

Source :

RBID : Pascal:12-0440471

Descripteurs français

English descriptors

Abstract

Previous model studies have shown that the isotopic composition of tropospheric water vapor is sensitive to atmospheric water transport processes, but compositional information is difficult to interpret due to the complexity of the models. Here an attempt is made to clarify the sensitivity by computing the relationship between tropospheric HDO (via δD) and H2O (via specific humidity q) in an idealized model atmosphere based on a "last-saturation" framework that includes convection coupled to a steady large-scale circulation with prescribed horizontal mixing. Multiple physical representations of convection and mixing allow key structural as well as parametric uncertainties to be explored. This model has previously been shown to reproduce the essential aspects of the humidity distribution. Variations of δD or q individually are dominated by local dynamics, but their relationship is preserved advectively, thus revealing conditions in regions of convection. The model qualitatively agrees with satellite observations, and reproduces some parametric sensitivities seen in previous GCM experiments. Sensitivity to model assumptions is greatest in the upper troposphere, apparently because in-situ evaporation and condensation processes in convective regions are more dominant in the budget there. In general, vapor recycling analogous to that in continental interiors emerges as the crucial element in explaining why δD exceeds that predicted by a simple Rayleigh process; such recycling involves coexistent condensation sinks and convective moisture sources, induced respectively by (for example) waves and small-scale convective mixing. The relative humidity distribution is much less sensitive to such recycling.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0440471

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The HDO/H
<sub>2</sub>
O relationship in tropospheric water vapor in an idealized "last-saturation" model</title>
<author>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, New South Wales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Meteorologie Dynamique/IPSL, CNRS 4</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0440471</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0440471 INIST</idno>
<idno type="RBID">Pascal:12-0440471</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E78</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005043</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000C92</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000C92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The HDO/H
<sub>2</sub>
O relationship in tropospheric water vapor in an idealized "last-saturation" model</title>
<author>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, New South Wales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Meteorologie Dynamique/IPSL, CNRS 4</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Complexity</term>
<term>General circulation models</term>
<term>Isotopic composition</term>
<term>Mixing</term>
<term>Model study</term>
<term>Q</term>
<term>Satellite observation</term>
<term>Specific humidity</term>
<term>Transport process</term>
<term>atmosphere</term>
<term>circulation</term>
<term>condensation</term>
<term>convection</term>
<term>dynamics</term>
<term>evaporation</term>
<term>experimental studies</term>
<term>frame structure</term>
<term>in situ</term>
<term>mixing</term>
<term>recycling</term>
<term>saturation</term>
<term>sensitivity analysis</term>
<term>troposphere</term>
<term>uncertainties</term>
<term>water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Vapeur eau</term>
<term>Saturation</term>
<term>Modèle circulation générale</term>
<term>Etude sur modèle</term>
<term>Composition isotopique</term>
<term>Phénomène transport</term>
<term>Complexité</term>
<term>Analyse sensibilité</term>
<term>Humidité spécifique</term>
<term>Facteur Q</term>
<term>Atmosphère</term>
<term>Bâti</term>
<term>Convection</term>
<term>Circulation</term>
<term>Mixage</term>
<term>Mélangeage</term>
<term>Incertitude</term>
<term>Dynamique</term>
<term>Observation par satellite</term>
<term>Etude expérimentale</term>
<term>In situ</term>
<term>Evaporation</term>
<term>Condensation</term>
<term>Recyclage</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Atmosphère</term>
<term>Condensation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous model studies have shown that the isotopic composition of tropospheric water vapor is sensitive to atmospheric water transport processes, but compositional information is difficult to interpret due to the complexity of the models. Here an attempt is made to clarify the sensitivity by computing the relationship between tropospheric HDO (via δD) and H
<sub>2</sub>
O (via specific humidity q) in an idealized model atmosphere based on a "last-saturation" framework that includes convection coupled to a steady large-scale circulation with prescribed horizontal mixing. Multiple physical representations of convection and mixing allow key structural as well as parametric uncertainties to be explored. This model has previously been shown to reproduce the essential aspects of the humidity distribution. Variations of δD or q individually are dominated by local dynamics, but their relationship is preserved advectively, thus revealing conditions in regions of convection. The model qualitatively agrees with satellite observations, and reproduces some parametric sensitivities seen in previous GCM experiments. Sensitivity to model assumptions is greatest in the upper troposphere, apparently because in-situ evaporation and condensation processes in convective regions are more dominant in the budget there. In general, vapor recycling analogous to that in continental interiors emerges as the crucial element in explaining why δD exceeds that predicted by a simple Rayleigh process; such recycling involves coexistent condensation sinks and convective moisture sources, induced respectively by (for example) waves and small-scale convective mixing. The relative humidity distribution is much less sensitive to such recycling.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>D19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The HDO/H
<sub>2</sub>
O relationship in tropospheric water vapor in an idealized "last-saturation" model</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHERWOOD (S. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RISI (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Meteorologie Dynamique/IPSL, CNRS 4</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>D19205.1-D19205.11</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000502914680250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0440471</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Previous model studies have shown that the isotopic composition of tropospheric water vapor is sensitive to atmospheric water transport processes, but compositional information is difficult to interpret due to the complexity of the models. Here an attempt is made to clarify the sensitivity by computing the relationship between tropospheric HDO (via δD) and H
<sub>2</sub>
O (via specific humidity q) in an idealized model atmosphere based on a "last-saturation" framework that includes convection coupled to a steady large-scale circulation with prescribed horizontal mixing. Multiple physical representations of convection and mixing allow key structural as well as parametric uncertainties to be explored. This model has previously been shown to reproduce the essential aspects of the humidity distribution. Variations of δD or q individually are dominated by local dynamics, but their relationship is preserved advectively, thus revealing conditions in regions of convection. The model qualitatively agrees with satellite observations, and reproduces some parametric sensitivities seen in previous GCM experiments. Sensitivity to model assumptions is greatest in the upper troposphere, apparently because in-situ evaporation and condensation processes in convective regions are more dominant in the budget there. In general, vapor recycling analogous to that in continental interiors emerges as the crucial element in explaining why δD exceeds that predicted by a simple Rayleigh process; such recycling involves coexistent condensation sinks and convective moisture sources, induced respectively by (for example) waves and small-scale convective mixing. The relative humidity distribution is much less sensitive to such recycling.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Vapeur eau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>water vapor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Vapor agua</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Saturation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>saturation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Saturación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle circulation générale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>General circulation models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etude sur modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Model study</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estudio sobre modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composition isotopique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Isotopic composition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Composición isotópica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Complexité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Complexity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Complejidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Humidité spécifique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Specific humidity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Humedad específica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Facteur Q</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>Q</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Factor Q</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Atmosphère</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>atmosphere</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Atmósfera</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Bâti</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>frame structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Convection</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>convection</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Convección</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Circulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>circulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Mixage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>mixing</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Mezcla</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Mélangeage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Mixing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Mezclado</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Incertitude</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>uncertainties</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>In situ</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>in situ</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Evaporation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>evaporation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Evaporación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Condensation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>condensation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Condensación</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Recyclage</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>recycling</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Reconversión</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>345</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000C92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0440471
   |texte=   The HDO/H2O relationship in tropospheric water vapor in an idealized "last-saturation" model
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024