Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS

Identifieur interne : 000291 ( PascalFrancis/Checkpoint ); précédent : 000290; suivant : 000292

Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS

Auteurs : Antoine Kremer [France] ; Brad M. Potts [Australie] ; Sylvain Delzon [France]

Source :

RBID : Pascal:14-0050765

Descripteurs français

English descriptors

Abstract

1. Predicted climate change is heading in many respects into untested environmental conditions for trees and to the reshuffling of species distributions. We explore the consequences that these changes are likely to have on population differentiation of adaptive traits. Superimposed on the spatial redistribution of the species, will there be a redistribution of their genetic variation? 2. We base our predictions on a conceptual framework, whose elements are the extant differentiation, and the predicted divergent evolution of populations along purposely chosen altitudinal/latitudinal gradients. We consider simultaneously phenotypic and genetic divergence, but emphasize genetically driven population differentiation. We illustrate phenotypic and genetic patterns of variation with examples from well-studied northern and southern hemisphere tree genera Quercus and Eucalyptus. 3. Most phenotypic traits show very large in situ clinal variation with variation in altitude or latitude. Genetic clines detected in common gardens usually follow the observed in situ phenotypic clines, reflecting cogradient variation. Rare counter gradients have also been detected, where phenotypic and genetic clines exhibit opposing signs. These patterns suggest that plasticity and selection contributed in most cases synergistically to the extant differentiation. 4. We anticipate that microevolutionary processes will be different along environmental gradients. At the leading edge, availability of newly suitable habitats will trigger migration favouring genotypes equipped with colonists attributes. At the rear edges of the distribution, populations will be submitted to strong selective pressures favouring genotypes capable of withstanding drought and heat stress. Central populations will benefit from the plastic response of trees that will temporarily compensate for the maladaptation, until genetic adaptive variation will be restored by gene flow, mutation or recombination. 5. We make predictions about future differentiation along environmental gradients, by highlighting traits that are likely to diverge, the rate at which differentiation will take place, and the role of gene flow and hybridization. We envisage that parallel selection may maintain differentiation at extant levels, whereas divergent selection will promote substantial differentiation for traits facilitating adaptation to contrasting conditions along the environmental gradient. We anticipate that genetic divergence may occur very rapidly and will be enhanced by the multilocus architecture of most adaptive traits.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0050765

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS</title>
<author>
<name sortKey="Kremer, Antoine" sort="Kremer, Antoine" uniqKey="Kremer A" first="Antoine" last="Kremer">Antoine Kremer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Cestas 33610</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33610</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Cestas 33610</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Talence, 33410</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33410</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Talence, 33410</wicri:noRegion>
<orgName type="university">Université de Bordeaux</orgName>
<placeName>
<settlement type="city">Bordeaux</settlement>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Potts, Brad M" sort="Potts, Brad M" uniqKey="Potts B" first="Brad M." last="Potts">Brad M. Potts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Plant Science and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55</s1>
<s2>Hobart TAS 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hobart TAS 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Cestas 33610</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33610</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Cestas 33610</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Talence, 33410</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33410</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Talence, 33410</wicri:noRegion>
<orgName type="university">Université de Bordeaux</orgName>
<placeName>
<settlement type="city">Bordeaux</settlement>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0050765</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0050765 INIST</idno>
<idno type="RBID">Pascal:14-0050765</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000558</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005899</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000291</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS</title>
<author>
<name sortKey="Kremer, Antoine" sort="Kremer, Antoine" uniqKey="Kremer A" first="Antoine" last="Kremer">Antoine Kremer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRA, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Cestas 33610</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Talence, 33410</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Bordeaux</settlement>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Potts, Brad M" sort="Potts, Brad M" uniqKey="Potts B" first="Brad M." last="Potts">Brad M. Potts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Plant Science and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55</s1>
<s2>Hobart TAS 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hobart TAS 7001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Cestas 33610</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33610</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Cestas 33610</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Talence, 33410</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>33410</wicri:noRegion>
<wicri:noRegion>UMR1202 Biodiversité Gènes et Communautés</wicri:noRegion>
<wicri:noRegion>Talence, 33410</wicri:noRegion>
<orgName type="university">Université de Bordeaux</orgName>
<placeName>
<settlement type="city">Bordeaux</settlement>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Functional ecology : (Print)</title>
<title level="j" type="abbreviated">Funct. ecol. : (Print)</title>
<idno type="ISSN">0269-8463</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Functional ecology : (Print)</title>
<title level="j" type="abbreviated">Funct. ecol. : (Print)</title>
<idno type="ISSN">0269-8463</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude</term>
<term>Climate change</term>
<term>Divergence</term>
<term>Forest tree</term>
<term>Gene flow</term>
<term>Genetic variability</term>
<term>Hybridization</term>
<term>Plasticity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Divergence</term>
<term>Arbre forestier</term>
<term>Changement climatique</term>
<term>Altitude</term>
<term>Flux génique</term>
<term>Variabilité génétique</term>
<term>Hybridation</term>
<term>Plasticité</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Changement climatique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1. Predicted climate change is heading in many respects into untested environmental conditions for trees and to the reshuffling of species distributions. We explore the consequences that these changes are likely to have on population differentiation of adaptive traits. Superimposed on the spatial redistribution of the species, will there be a redistribution of their genetic variation? 2. We base our predictions on a conceptual framework, whose elements are the extant differentiation, and the predicted divergent evolution of populations along purposely chosen altitudinal/latitudinal gradients. We consider simultaneously phenotypic and genetic divergence, but emphasize genetically driven population differentiation. We illustrate phenotypic and genetic patterns of variation with examples from well-studied northern and southern hemisphere tree genera Quercus and Eucalyptus. 3. Most phenotypic traits show very large in situ clinal variation with variation in altitude or latitude. Genetic clines detected in common gardens usually follow the observed in situ phenotypic clines, reflecting cogradient variation. Rare counter gradients have also been detected, where phenotypic and genetic clines exhibit opposing signs. These patterns suggest that plasticity and selection contributed in most cases synergistically to the extant differentiation. 4. We anticipate that microevolutionary processes will be different along environmental gradients. At the leading edge, availability of newly suitable habitats will trigger migration favouring genotypes equipped with colonists attributes. At the rear edges of the distribution, populations will be submitted to strong selective pressures favouring genotypes capable of withstanding drought and heat stress. Central populations will benefit from the plastic response of trees that will temporarily compensate for the maladaptation, until genetic adaptive variation will be restored by gene flow, mutation or recombination. 5. We make predictions about future differentiation along environmental gradients, by highlighting traits that are likely to diverge, the rate at which differentiation will take place, and the role of gene flow and hybridization. We envisage that parallel selection may maintain differentiation at extant levels, whereas divergent selection will promote substantial differentiation for traits facilitating adaptation to contrasting conditions along the environmental gradient. We anticipate that genetic divergence may occur very rapidly and will be enhanced by the multilocus architecture of most adaptive traits.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0269-8463</s0>
</fA01>
<fA03 i2="1">
<s0>Funct. ecol. : (Print)</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KREMER (Antoine)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>POTTS (Brad M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DELZON (Sylvain)</s1>
</fA11>
<fA14 i1="01">
<s1>INRA, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Cestas 33610</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés</s1>
<s2>Talence, 33410</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Plant Science and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55</s1>
<s2>Hobart TAS 7001</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>22-36</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21184</s2>
<s5>354000501672620030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0050765</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Functional ecology : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>1. Predicted climate change is heading in many respects into untested environmental conditions for trees and to the reshuffling of species distributions. We explore the consequences that these changes are likely to have on population differentiation of adaptive traits. Superimposed on the spatial redistribution of the species, will there be a redistribution of their genetic variation? 2. We base our predictions on a conceptual framework, whose elements are the extant differentiation, and the predicted divergent evolution of populations along purposely chosen altitudinal/latitudinal gradients. We consider simultaneously phenotypic and genetic divergence, but emphasize genetically driven population differentiation. We illustrate phenotypic and genetic patterns of variation with examples from well-studied northern and southern hemisphere tree genera Quercus and Eucalyptus. 3. Most phenotypic traits show very large in situ clinal variation with variation in altitude or latitude. Genetic clines detected in common gardens usually follow the observed in situ phenotypic clines, reflecting cogradient variation. Rare counter gradients have also been detected, where phenotypic and genetic clines exhibit opposing signs. These patterns suggest that plasticity and selection contributed in most cases synergistically to the extant differentiation. 4. We anticipate that microevolutionary processes will be different along environmental gradients. At the leading edge, availability of newly suitable habitats will trigger migration favouring genotypes equipped with colonists attributes. At the rear edges of the distribution, populations will be submitted to strong selective pressures favouring genotypes capable of withstanding drought and heat stress. Central populations will benefit from the plastic response of trees that will temporarily compensate for the maladaptation, until genetic adaptive variation will be restored by gene flow, mutation or recombination. 5. We make predictions about future differentiation along environmental gradients, by highlighting traits that are likely to diverge, the rate at which differentiation will take place, and the role of gene flow and hybridization. We envisage that parallel selection may maintain differentiation at extant levels, whereas divergent selection will promote substantial differentiation for traits facilitating adaptation to contrasting conditions along the environmental gradient. We anticipate that genetic divergence may occur very rapidly and will be enhanced by the multilocus architecture of most adaptive traits.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B02A</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Divergence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Divergence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Divergencia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Arbre forestier</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Forest tree</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Arbol forestal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Changement climatique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Climate change</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cambio climático</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Altitude</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Altitude</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Altitud</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Flux génique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Gene flow</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Flujo génico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Variabilité génétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Genetic variability</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Variabilidad genética</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Hybridation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hybridization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Hibridación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Plasticité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Plasticity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Plasticidad</s0>
<s5>08</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Climatologie dynamique</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Dynamical climatology</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Climatología dinámica</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Génétique population</s0>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Population genetics</s0>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Genética población</s0>
<s5>26</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s5>27</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Environmental factor</s0>
<s5>27</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Factor medio</s0>
<s5>27</s5>
</fC07>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Aquitaine</li>
<li>Nouvelle-Aquitaine</li>
</region>
<settlement>
<li>Bordeaux</li>
</settlement>
<orgName>
<li>Université de Bordeaux</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Nouvelle-Aquitaine">
<name sortKey="Kremer, Antoine" sort="Kremer, Antoine" uniqKey="Kremer A" first="Antoine" last="Kremer">Antoine Kremer</name>
</region>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<name sortKey="Kremer, Antoine" sort="Kremer, Antoine" uniqKey="Kremer A" first="Antoine" last="Kremer">Antoine Kremer</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Potts, Brad M" sort="Potts, Brad M" uniqKey="Potts B" first="Brad M." last="Potts">Brad M. Potts</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:14-0050765
   |texte=   Genetic divergence in forest trees: understanding the consequences of climate change : CLIMATE CHANGE AND SPECIES RANGE SHIFTS
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024